
XPath: The Secret to Success with
XSLT, XQuery, and Schematron

Debbie Lapeyre
Mulberry Technologies, Inc.
17 West Jefferson St.
Suite 207
Rockville MD 20850
Phone: 301/315-9631
Fax: 301/315-8285
dalapeyre@mulberrytech.com
http://www.mulberrytech.com

Version 1.0 (October 2017)
©2017 Mulberry Technologies, Inc.

http://www.mulberrytech.com

XPath: The Secret to Success with XSLT,
XQuery, and Schematron

I. Objectives of the Course . 1
A Few Examples of XPath . 2

II. Looking at an XML Document . 3
Getting from an XML Document to a Tree . 4
Seven Types of Nodes in the Tree . 5
Nodes Have Name and/or Value Properties . 6
Tree Terms: parent, child, sibling . 7
Tree Terms: Document Order . 8
Tree Terms: ancestors, descendants . 9
Making a Tree of Nodes . 10
Optional Exercise, Making a Tree . 10

III. What is XPath? . 11
XPath = The XML Tree-walking Language . 11
XPath has Three Main Uses . 12
The XPath 1.0 Data Model: Trees Not Text . 13
Axes: How XPath Talks About the Tree . 14

Syntax for Axes . 14
The 13 XPath Axes . 15
Let’s Learn the Axes . 15
Optional Exercise: Gathering Nodes By an Axis . 15
Five Axes Cover All a Document’s Elements from Anyplace 16
The Peculiarities of Attributes . 16

XPath Location Paths Walk the Tree . 17
Each Location Step Has At Least Two Parts . 18
A Step With Three Parts . 18
Absolute Location Path . 19
Relative Location Path . 19
A More Complex Location Path (optional) . 23

XPath Node Tests . 26
Node Testing by Name . 26
Node Testing by Type . 27
Node Testing by Explicit Schema Data Type . 28
For Reference: More Node Tests (optional) . 29
Expressions in Location Paths (optional) . 29

Filters (Predicates) . 30
Examples of Filters . 31
One Step Can Take Many Filters . 31
Examples of XPath . 32
Reading an XPath . 33

XPath Short and Long Syntax . 34
Heads-up: Long and Short Syntax . 34
Abbreviations to Make Short Syntax . 35
Short Syntax Simplifies Expressions . 35
Optional Exercise: Long and Short Syntax . 36

Page i

XPath: The Secret to Success with XSLT, XQuery, and Schematron

From Full to Abbreviated . 36
From Abbreviated to Full . 37

IV. Match Patterns are A Subset of XPath . 38
The XPath of Match Patterns  . 39
Examples of Using Match Patterns . 40
So What is the Problem? . 40
A Plain Old Location Path . 41
Same Location Path as a Pattern  . 41

V. XPath is an “Expression Language” (advanced) . 42
Functions and Operators . 43
More Examples of Functions (optional) . 44
For Reference: Some Useful Functions (optional) . 45
All Functions, Expressions, Operators Work on Typed Data 45
Most Common Types for Expressions . 46
XPath 1.0 Assumes Automatic CastingBetween Data Types 46
XPath 1.0 Rules for Converting Objects to Booleans . 47
XPath 2.0 and XPath 3.0 Types are Explicit . 47
Type Functions (optional) . 48
When an XPath Expression is Evaluated . 49
Comparison Operators in XPath and XSLT . 50

VI. Tips, Traps, and Gotchas . 51
Advanced Tips and Gotchas (optional) . 58

VII. Colophon . 62

Appendixes
Appendix A: Answers to Short/Full Syntax Exercise . 1
Appendix B: Pattern Matching in XSLT and Schematron . 1
Appendix C: A Few XPath Functions . 1
Appendix D: XPath Operations . 1
Appendix E: XPath 2.0 and 3.0 Data Model (advanced, optional) . 1
Appendix F: ancestor Axis Example . 1
Appendix G: ancestor-or-self Axis Example . 1
Appendix H: child Axis Example . 1
Appendix I: descendant Axis Example . 1
Appendix J: descendant-or-self Axis Example . 1
Appendix K: following Axis Example . 1
Appendix L: following-sibling Axis Example . 1
Appendix M: parent Axis Example . 1
Appendix N: preceding Axis Example . 1
Appendix O: preceding-sibling Axis Example . 1
Appendix P: self Axis Example . 1

Page ii

XPath: The Secret to Success with XSLT, XQuery, and Schematron

XPath: The Secret to Success with XSLT,
XQuery, and Schematron

slide 1

I. Objectives of the Course
• XPath 1.0 data model (thorough understanding)

• Location Paths (thorough understanding)

• Long and Short XPath Syntaxes (familiarity)

• XPath 2.0 and higher Data Model (exposure)

• Functions and Operators (exposure)

Almost all of XPath 1.0, some 2.0, mention of 3.0, three words on 3.1

slide 2

This is Not  New Technology
• XPath 1.0 1999 (used by programming languages)

• XPath 2.0 2007 (better! a weak programming language)

• XPath 3.0, 2014 (Turing complete programming language, supports
streaming, higher order functions)

• XPath 3.1, 2017 (JSON-like maps and arrays)
(You need the fundamentals of XPath 1.0/2.0 before you learn XPath 3.0
[maybe])

page 1

slide 3

A Few Examples of XPath
We are going to learn to read these

//title Returns all titles in the document
p[1] Returns the first p element child of the context

node*
attribute::security The “security” attribute on the context node*
//div[@type='chapter']/
figure

Returns all figure elements inside div ele-
ments that have type attribute equal “chapter”

child::book/
child::title[con-
tains(.,"XPath")]

title children of the book children of the con-
text node*, where the title contains the string
“XPath”

sum(child::cost) The sum of all the cost children of the context
node*

(* “Context node” - wherever we are at the moment the XPath is evaluated)

page 2

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 4

II. Looking at an XML Document
• An XML document is a sequence of characters

• data characters and markup characters

• start-tag and end-tag markup delimits elements

• There is another way to think of an XML document (a tree!)

• Part of the processing (usually an XML parser) builds a tree

• Processes (like XPath and XSLT) work on trees of nodes (made from XML
documents)

(Text nodes were left out of this diagram to make it simpler to understand)

page 3

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 5

Getting from an XML Document to a Tree
• One root  above all elements (called 'document node' or '/')

• Tree contains element nodes, attribute nodes, text nodes, etc.

• One document element  (child of the root)

• “Containment” in XML becomes “children” in the tree

(Text nodes were left out of this diagram to make it simpler to understand)

page 4

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 6

Seven Types of Nodes in the Tree
• Root node (the one and only, “/”, aka “Document Node”)

• Element nodes (topmost one called “document element”)

• Attribute nodes

• Text nodes

• For data character content of the elements

• Includes whitespace-only nodes (usually line breaks)

• Comment nodes

• Processing Instruction nodes

• Namespace nodes (in XPath 1.0)

Note:  The “document node” is not  the same as the “document element”. Rather, the document
element is a child of the document node (root).

page 5

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 7

Nodes Have Name and/or Value Properties
• Some nodes have names (element nodes, attribute nodes)

• Each node has a string  value

• Root node has

• a name (/)

• a value: the concatenation of all text nodes inside the whole document

• Element nodes have

• a name (the "gi" or tag name)

• a value: the concatenation of all text nodes inside the element

• (document element value is a concatenation of all text nodes in the
document)

• Attribute nodes have

• a name (the name of the attribute)

• a value (the value of the attribute)

• Text nodes have no names, just their text value

page 6

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 8

Tree Terms: parent, child, sibling

• / (root) is the parent  of dog

• dog is the parent  of

• bone

• flea

• bone and flea are children  of dog

• bone and flea are siblings  (of each other)

• bone is a preceding  sibling of flea

• flea is a following  sibling of bone

page 7

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 9

Tree Terms: Document Order

• Elements have a defined document order:

1. /
2. dog
3. bone
4. flea

• “Depth-first  traversal”:
means all the way down each branch before going on to next sibling

page 8

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 10

Tree Terms: ancestors, descendants

• Element dog has 1 ancestor: root (/)

• First flea has 2 ancestors: dog and root (/)

• 2nd/3rd fleas have 3 ancestors: flea, dog, and root /

• dog has 1 flea child and 3 flea descendants

• root has 1 dog child and 5 descendants

• bone has 2 ancestors: dog and root (/)

• First dog element is ancestor of all the other elements and is called the
document element 

• bone has no children; it is empty  (as are two of the fleas)

(document order: root, dog, flea, flea, flea, bone)

page 9

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 11

Making a Tree of Nodes
<example>Hello there<?foo?>world<!--bar-->.</example>

(Contiguous characters are grouped into one  text node)

slide 12

Optional Exercise, Making a Tree
<?xml version="1.0" encoding="UTF-8"?>
<article
 xmlns:xlink="http://www.w3.org/1999/xlink"
 article-type="book-review">
<front>
 <journal-meta>
 <journal-id journal-id-type="nlm-ta">Philos Ethics Humani Med</journal-id>
 <journal-title-group>
 <journal-title>Philosophy, Ethics, and Humanities in
 Medicine</journal-title>
 </journal-title-group>
 <issn pub-type="epub">1747-5341</issn>
 <publisher>
 <publisher-name>BioMed Central</publisher-name>
 <publisher-loc>London</publisher-loc>
 </journal-meta>
</front>
</article>

page 10

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 13

III. What is XPath?
• A language for

• navigating to parts of the XML tree

• performing operations over data (including, but not limited to, trees)

• matching conditions in a tree (a subset of XPath is designed for this)

• Used in XSLT, XQuery, Schematron, XSL-FO, for XML databases, etc.

• XPath says how to get there (in your document)

• XQuery, XSLT, Schematron, XPath 3, etc. say what to do when you get
there

(XPath 2.0, 3.0, and 3.1 may also tell you what to do)

slide 14

XPath = The XML Tree-walking Language
• Named because it uses a path notation with slashes

like UNIX directories and URLs

 invoice/customer-data/customer-name
 article/body/sec/title
 /dog/flea/flea

page 11

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 15

XPath has Three Main Uses
1. Locating portions of XML documents

• addressing (naming) portions of an XML document

• addresses (finds) a named portion of an XML document
(“gimme my footnote!”)... and gets it back

2. Testing/Matching (used in Schematron, XSLT)

• A subset of XPath was designed for this

• Test whether a node in a tree matches a pattern
(Is this node a paragraph inside a footnote with an attribute called
“footnote-type” with value “legal”?)

3. Performing operations over data (including trees)

• numeric operations (counting, adding, rounding)

• string operations (contains, starts-with, substring, tokenizing)

• boolean operations (for conditionals: equality, comparisons between numbers or nodes)

• sorting, and lots more

page 12

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 16

The XPath 1.0 Data Model: Trees Not Text
• XPath does not

• read or understand XML documents (tagged text)

• understand about pointy brackets or entities

• XPath works on trees (a model of an XML document)

• Some application makes an XML document into a tree of nodes 

• XPath works with element nodes, attribute nodes,
comment nodes, etc.

An application uses XPath to select part of a tree for processing

page 13

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 17

Axes: How XPath Talks About the Tree
• The parts of the tree are named using axes

(for example, ancestor:: or child::)

• An axis is a relationship between

• “Where you are now” and

• Another part of the tree

• “Where you are now” is called the context node

• An axis  determines a direction to travel on the tree

• Always starting from a context node 

• Always in one direction

• This is one “step” in traversing the tree

slide 18

Syntax for Axes
• An XPath axis is written as

• the axis name followed by

• two colons

• e.g., parent::
• “Forward” axes proceed in document order (like child::)

• “Reverse” axes proceed in reverse document order
(like ancestor::)

page 14

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 19

The 13 XPath Axes
child descendant descendant-or-self
parent ancestor ancestor-or-self
attribute following-sibling following
self preceding-sibling preceding
 namespace

slide 20

Let’s Learn the Axes

(Text nodes were left out of this diagram to make it simpler to understand)

slide 21

Optional Exercise: Gathering Nodes By an
Axis
• Taking the node “X” as the context node

• Let’s run through the axes, one at a time

page 15

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 22

Five Axes Cover All a Document’s Elements
from Anyplace
The following five axes (taken together) let you cover the entire tree.
• ancestor(s) + descendant(s) + following + preceding + self = all nodes

(except attribute and namespace)

slide 23

The Peculiarities of Attributes
• An attribute node has a parent (the element to which it is attached)

• But the attribute is not

• a “child” of that parent

• or a “descendant” either

• The only way to retrieve an attribute is to use

• attribute:: axis

• short form @

article[attribute::status="draft"]
article[@status="draft"]

(The child:: axis traverses to elements, text nodes, comments, or processing instructions, but not
to attributes.)

page 16

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 24

XPath Location Paths Walk the Tree
(Deep, reread this after you see it!)

• Location Paths written as a series of “steps”

• Each step talks about nodes in the tree

• A slash (/) between each step

• Paths are composed left to right
(beginning at the context node)

• Each step:

• selects the requested nodes relative to the context node (selected in the
previous step)

• uses tests to determine which nodes to keep

• Provides the context for the next step
child::title[@xml:lang="en"]

page 17

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 25

Each Location Step Has At Least Two Parts
(May Have Three)

1. Axis  — Where to go (in relation to the context node)

• expressed as an Axis name + “::” (descendant::)

• an axis specifier is always present

• sometimes implicit (title same as child::title)

2. Node Test  — What kind of node do you want?

• expressed as the name or type of the node

• (title, text()), element()

3. Filter  (also known as Predicate)

• an optional qualifier to further refine/restrict the nodes returned

• inside square brackets after the node test ([])

• ([starts-with(.,"The")], [last()]))

Location Step = axis:: + nodetest + [predicate/filter]*
child::title[@xml:lang="en"]

slide 26

A Step With Three Parts
child::list[count(descendant::item) > 8]

1. An axis  (child::)

2. A node test  (the name of an element “list”)

3. Zero or more predicates/filters  [count(descendant::item) > 8]
Go along the child axis from the context node,
and gather up all the <list> elements,
then keep each <list>;
if and only if it has more than 8 <item> descendants.

page 18

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 27

Absolute Location Path
• Starts at the root

• Begins with a “/”

• /body retrieves all child elements of the root  named body

 /article/body
 /article/body/section/title
 /article/front/article-meta/pub-date

slide 28

Relative Location Path
• Starts at the context node

• Has no leading “/”

• body
• Starts wherever we are at the moment 

• Retrieves child elements of the context node  named body

 article/body
 body/section/title
 article-meta/pub-date
 pub-date

page 19

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 29

“/” Separates Location Paths into Steps
Relative Location Path

sec/title
One or more “location steps” separated by “/”

Absolute Location Path
/sec/title
Initial “/” indicates the root node;
followed by a location path

slide 30

Let’s Evaluate the Location Path slide/title
Two ways to read and use this Location Path:
• As a context or match pattern

• matches any title child of a slide in the document

• As a select expression

• starts at the context node

• selects all slide children of the context node

• then selects all the title children of those slides

• returns a node list (union of title elements)

• what is selected depends on the context node

slide 31

Let’s Watch Select Expressions in Action

page 20

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 32

First, Determine the Context Node
Something non-XPath does this:
• Schematron @context attribute

• XSLT @match attribute

page 21

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 33

The slide Step in slide/title
slide/title

Select the slide children of context node:

page 22

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 34

The title step in slide/title
child::slide/child::title

For each of those slide nodes, select title children:

Result is the union

slide 35

A More Complex Location Path (optional)
slide[attribute::type="overview"]/list[count(descendant::item) > 8]

• Still has two steps separated by “/” character:

• Step #1 slide[attribute::type="overview"]
• / (a slash)

• Step #2 list[count(descendant::item) > 8]

page 23

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 36

Stepping Through This Example (optional)
slide[attribute::type="overview"]/
list
[count(descendant::item) > 8]

• Step #1

• From where we are (our context node)

• Go through that node’s children

• Get the slide elements

• Take the ones that have a type attribute with the value “overview”

• Step #2, For each of the selected slide children

• Get all its list children

• Keep the ones that have more than eight item descendants

slide 37

Homework: An Even More Complex Relative
Location Path (optional)
/descendant-or-self::node()/child::body/descendant-or-self::node()/child::sec/
child::p/child::list/child::list-item[3]/child::p

(Explained on the next slide; try it first as a self-test.)

page 24

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 38

Stepping Through This Complex Example
(optional)
/descendant-or-self::node()/child::body/descendant-or-self::node()/child::sec/
child::p/child::list/child::list-item[3]/child::p

• Step #0, the root "/", this is an absolute path

• Step #1, all the descendants of the root, plus the root

• Step #2, all the body children of all these

• Step #3, all the descendants of the body element, plus the body
• Step #4, all the sec children of these elements. Yes, there are lots of them,

not just the body's sec children but also their  sec children

• Step #5, all paragraphs (p children) in each sec
• Step #6, all list children in each p element

• Step #7, the third list-item in each list
• Step #8, all the paragraphs (p children) in this list-item

page 25

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 39

XPath Node Tests
Location Step = axis:: + node test + [filter]*
• Test the nodes in the tree

• By type of node (element, comment, etc.)

• By name of node (element type name (gi), attribute name)

• A common node test is “*”
The meaning depends on the axis

child::* means all element children of the context node
attribute::* means all attributes of the context node

“*” selects all nodes of the “primary node type” of the axis

slide 40

Node Testing by Name
• name

• Tests the name of the node

• Returns nodes of that name from the axis specified

child::item Retrieves any child elements named item
parent::list Retrieves a parent element named list
attribute::type Retrieves any attribute  named type
ancestor-or-
self::section

Retrieves any ancestor elements named section, or
the context node itself if it’s a section element

page 26

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 41

Node Testing by Type
You can use any of these node tests with any axis

node() Test is true for any type of node
text() Any text node
comment() Any comment node
processing-instruction() Any processing instruction node

element() Any element node [XSLT 2.0+]

attribute() An attribute [XSLT 2.0+]

item() Any item (node or atomic value) [XSLT 2.0+]

Pop Quiz: attribute::text() gets you which nodes?

page 27

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 42

Node Testing by Explicit Schema Data Type
(XSLT 2.0+)

element() Any element node
element(title) Any element named title (any data type)
element(title,
hardtitle)

Any element named title whose schema type is the
user-defined type “hardtitle” (or a type derived from
“hardtitle”)

element(*,
hardtitle)

Any element whose schema type is the user-defined
type “hardtitle” (or a type derived from “hardti-
tle”)

element(*,
xs:date)

Any element whose schema type the simple type
xs:date

schema-
element(title)

Any element named title or in the substitution group
headed by title and (loosely) whose schema type is the
same as title’s (or a type derived from “title”)

page 28

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 43

For Reference: More Node Tests (optional)
• processing-instruction($target)

• Test is true for any processing-instruction node with target named tar-
get

• child::processing-instruction('xml-stylesheet')
retrieves any PI children with target named xml-stylesheet

• $prefix:*

• True for any node of the principal node type of the axis in the name-
space identified with the given prefix

• descendant-or-self::svg:* retrieves any descendant elements in the
svg namespace, or the context node itself if it is one

• For example,
ancestor-or-self::tei:div
Retrieves any ancestor elements named div in the tei namespace, or
the context node itself if it’s such a div

slide 44

Expressions in Location Paths (optional)
A location step can include an expression

//mixed-citation/(name | person-group)/surname

If the expression is not the final step, it must return a sequence of nodes
(or an error is returned)
Here is the same thing in XPath 1.0
//mixed-citation/name/surname | //mixed-citation/person-group/surname

page 29

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 45

Filters (Predicates)
Location Step = axis:: + nodetest + [filter/predicate]*
• A location path step

• traverses the tree and

• collects a set/list of nodes

• Each predicate filters  that set of nodes

• Filters/Predicates appear within square brackets

slide 46

A Sample Filter
descendant::slide[@showintoc='yes']

The XPath expression above retrieves
• Descendant elements of the context node named slide
• Then keeps only those that have

• a showintoc attribute

• with value equal to “yes”

Filters can be read as “if and only if” or “keep only those that”

page 30

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 47

Examples of Filters
child::emph[@type]

• emph element children with an attribute type
child::emph[@type='italic']

• emph element children with attribute type whose value is “italic”
slide[descendant::title[contains(self::node(), 'Where We Are')]]

• slide children

• That have a descendant title element

• That contains the string “Where We Are”

contains() is a function (two arguments)

slide 48

One Step Can Take Many Filters
• Each successive predicate filters the node set to another node set

• Multiple predicates in a single step are evaluated left to right

• Each predicate filters a node set

• Each filtered node set provides the context for the next predicate (or
next step if this is the last predicate)

Therefore order matters!!
slide [@type] [3]

• (slide children of context node, those with an attribute of type, the third
such slide)

slide [3] [@type]

• (slide children of context node, the third such slide, if and only if   that
slide has an attribute of type)

page 31

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 49

Examples of XPath
@security The “security” attribute on the context

node
sum(cost) The sum of all the cost children of the con-

text node
book/
title[contains(.,"XPath")]

title children of the book children of the
context node, where the title contains the
string “XPath”

For $a in
distinct-values(/bib/book/
author)
return ($a,
/bib/book[author = $a]/
title

For x in...
Returns a sequence of distinct values of
author elements inside book elements, each
author followed by the book title ele-
ments belonging to that author

page 32

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 50

Reading an XPath
Quiz: Figure out what you will get back

child::flea

ancestor::flea

//caption[count(*) > 1 or not(p)]

contrib-group/contrib

contrib-group[@content-type="author"]/contrib/(name | string-name)/surname

//sec[@type="summary"]

//sec[title | label]

//sec/title

//xref[@rid = current()/@id]

back/sec[@id and not(ancestor::appendix)] |
sec/subsect1[@id and not(ancestor::appendix)] |
subsect1/subsect2[@id and not(ancestor::appendix)] |
subsect2/subsect3[@id and not(ancestor::appendix)]

All the rest is which ones, not what

page 33

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 51

XPath Short and Long Syntax
Long syntax:
• Explicit

• Easy to learn

• Can be verbose

Short syntax:
• Some long forms can be abbreviated

• Concise, easy to use (if you know what it means!)

• But there are a few “gotchas”
some things don’t work with short, only with long

slide 52

Heads-up: Long and Short Syntax
• XPath has an abbreviated (short) syntax for some constructions

• child::slide[attribute::type="overview"]
is the same as
slide[@type="overview"]

• Most XPath in real life uses short syntax when possible 

• Some things can only be expressed in long syntax

• Short syntax is fun and easy when you know long syntax
...and confusing (no fun!) when you don’t

So we learn the long syntax first

page 34

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 53

Abbreviations to Make Short Syntax
Full Syntax Abbrevi-

ated Syn-
tax

Comment

child:: no axis means the child:: axis
attribute:: @
/descendant-or-
self::node()/

// Note that this is one full step: axis,
node test, and delimiting slashes

self::node() . i.e., the context node
parent::node() ..
[position() = 12] [12] A number (or expression returning a

number) by itself in a predicate is an
equality test against position()

...and that’s it!

slide 54

Short Syntax Simplifies Expressions
child::slideshow/ child::title slideshow/title
parent::node()/ descendant-or-
self::node()/ child:title

..//title

self::node()/ descendant-or-self::node()/
child::emph/ attrib-
ute::type[self::node()='italic']

.//emph/
@type[.='italic']

page 35

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 55

Optional Exercise: Long and Short Syntax
• Take a look at the XPath 1.0 reference card

• Translate the expressions in the tables from full syntax to abbreviated syn-
tax or from abbreviated to full.

slide 56

From Full to Abbreviated
Translate the expressions from full to abbreviated syntax

Full Syntax Abbreviated Syn-
tax

self::node()/child::PROLOGUE/child::TITLE
/descendant-or-self::node()/child::STAGEDIR
child::*/child::LINE
parent::node()/child::processing-
instruction("foo")

attribute::bar

page 36

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 57

From Abbreviated to Full
Translate the expressions from abbreviated to full

Abbreviated Syntax Full Syntax
PERSONA
./PGROUP
//FM/P
/
SCENE/LINE
../TITLE

(Answers are in Appendix A)

slide 58

Warning: In a Location Path,
Axis and Node Test Are Required
• Watch out! Every step  has an axis and a node test.

• Abbreviations (short syntax) may make things invisible — but they’re still
there 

• (Except filters. When they’re not there, they’re not there.)
This is good. It means when a location path is mysterious, all you have to do
is expand it to long syntax and figure out what its pieces are.

page 37

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 59

IV. Match Patterns are A Subset of XPath
Remember there are two ways to read and use this Location Path:
slide/head

• For a select expression,what is selected depends on the context node

• starts at the context node

• selects all its slide children

• then selects all the title children of those slides

• returns a node list (union of title elements)

• As a context or match pattern

• matches any title child of a slide in the document

• used in Schematron @context attribute

• used in XSLT @match attribute

page 38

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 60

The XPath of Match Patterns 

• Are a subset  of XPath expressions returning node sets

• Have special “match pattern” rules:

• Only child:: and attribute:: axes are allowed

• / and // step operations are allowed

• Filters are allowed

• XSLT 1.0 disallows variable references; XSLT 2.0, 3.0+ allow variables

A good match pattern Not okay
sec following-sibling::*
caption/title title/parent::caption
sec//p sec/descendant::p
caption[title] caption/title/..
p[1] p[position() = $pos]
sec[@sec-type='chapter']/title 1 + 2

page 39

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 61

Examples of Using Match Patterns
Ancestry
<xsl:template match="title">
vs
<xsl:template match="sec/title">
vs
<xsl:template match="sec/sec/title">

Associated Values
<xsl:template match="ext-link[@ext-link-type='uri']">
vs
<xsl:template match="ext-link[@ext-link-type='email']">

Arbitrary Criteria
<xsl:template match="list-item">
vs
<xsl:template match="list-item[not(following-sibling::list-item)]">

slide 62

So What is the Problem?
• Match patterns and select expressions have the same syntax

• So they can look just alike 

• Which can be confusing

page 40

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 63

A Plain Old Location Path
<xsl:apply-templates select="sec/title"/>

• As an XSLT select expression

• Selects a set of nodes for processing

• Evaluated relative to the current node

• Returns a list of nodes (all the title children of the section (sec) chil-
dren of the context node, in document order)

slide 64

Same Location Path as a Pattern 

In Schematron, we have:

<rule context="sec/title">

Matches a node if and only if:
• Node is a title
• Node has sec parent

(Optional Exercise: Let’s all go see Appendix B for more about location
paths versus patterns.)

page 41

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 65

V. XPath is an “Expression Language”
(advanced)
When you write XPath, what you write is an expression
• A location path is one kind of expression
/article/front/article-meta/pub-date

• (7 * 6) is also an expression

• An expression is evaluated to produce an object

• A location path returns a sequence (list) of nodes

• (7 * 6) returns 42
• "XPath" = "difficult" returns false
• distinct-values((4,5,6,7,6,5,4)) returns a sequence (4,5,6,7)

distinct-values() is a function “(4,5,6,7,6,5,4)” is a sequence

page 42

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 66

XPath Defines Functions and Operators (for
Expressions)
• Syntax for a function is:

• the name of the function followed by

• parentheses, which contain

• any arguments the function needs (maybe none!)

• For example

• count(item) returns a count of the number of item children

• contains("Mulberry", "M") returns true (boolean)

• not(title) returns true if the context node has no title child and
false if it has one (boolean)

• concat('Mu','lberry') returns “Mulberry” (a string)

• starts-with('Mulberry', 'M') returns true (boolean)

• distinct-values($someSequence) returns a list of the non-duplicate
items in the given sequence

• last() returns a number equal to the context size

page 43

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 67

More Examples of Functions (optional)
• item[position() = 3]

• Get item element children whose position is 3 (i.e. the third one)

• item[last()]
• Get item element children whose position is equal to the number of p

elements on the axis (i.e. the last one)

• slide[count(list) > 1]/head
• Get slide element children that have more than one list element child;

then get the list’s head element children

• child::*[not(self::contrib)]
• Get any element children that are not themselves contrib elements

• //title[*]
• Just a filter, not a function. Get all the title elements that have chil-

dren

• //normalize-space(title[not(*)]) 

• Get rid of extra whitespace on all the title elements that DO NOT have
any children

• attribute::*[not(local-name()='type')]
• Get attributes that aren’t named “type”

page 44

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 68

For Reference: Some Useful Functions
(optional)

position() Returns position of node in current node list
(Not  the position of the node in the document)

last() Returns the size (count) of the current node list
count(node-set) Counts the nodes in the argument node set
name(node-set?)
and local-
name(node-set?)

Returns the namespace-qualified name (name()) or lo-
cal name (local-name()) of a node (the first node in
the argument node set)

not(object) Converts the argument to a Boolean (when necessary)
and inverts it

slide 69

Optional Exercise: Looking at Some XPath
Functions
We might look at Appendix C

slide 70

All Functions, Expressions, Operators Work
on Typed Data
• Best if types are explicit (from schema or casting)

• XSLT 1.0 will “coerce” type if there is no typing specified

• XSLT 2.0+ throw an error on type mis-match

• You can test on types as well as on elements and attributes

page 45

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 71

Most Common Types for Expressions
• Nodes of zero or more nodes

(node sets in XSLT 1.0, sequences of nodes in XSLT 2.0+)

• Numbers (1, 2, 3, 30000000, NaN)

• Strings (“Debbie”, “Tommie”, “1”, “30000000”)

• Booleans (true or false)

• Sequences of “items”
(XSLT 2.0 and 3.0+ can also use all Schema types, derived types, and atomic values)

slide 72

XPath 1.0 Assumes Automatic Casting
Between Data Types
(There’s magic in those expressions!)
• Some functions/operations require an argument or operand of a particular

type

• If the given arguments are not what the function needs
...will try to turn an object into what it needs

concat('http://', child::url)

• concat() requires strings as arguments

• The first argument is a string; but the second is a node set 

• child::url will be turned into a string

• A node set is converted into a string  by taking the string value of the
first node in the set (in document order)

• The concatenation could produce “http://www.mulberrytech.com”

• If there is no node, or an empty one, you’d get “http://”

page 46

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 73

XPath 1.0 Rules for Converting Objects to
Booleans
• There are rules for converting between objects (Appendix C)

• Here are the rules for converting an object to a boolean

• First column is object you have; second column is how the conversion
works

Boolean false if false, true if true
Number false if zero, true if not
String false if empty (= ""), true if not

(or true if the string’s length >= 1)
Node set false if empty (no nodes in set), true if not

slide 74

XPath 2.0 and XPath 3.0 Types are Explicit
New functions to deal with types
• Create types explicitly

• Cast between types

• Determine (or fix) types before you try to use them

• Catch type errors with conditional testing
Schema-aware processors (SA) can read the types from the schema

page 47

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 75

Type Functions (optional)

cast as Creates a new value of a specific type based on the
existing value
input-expression  cast as target-type 
 5 cast as integer

castable as Tests if a given value can be cast into a given tar-
get type without error. Returns boolean.
expression  castable as target-type
$size castable as xs:anyURI

xs:date("2017-10-31") Constructor functions. One for every one of the
atomic XSD types. Requires xs: namespace. This
one works the same as
("2017-10-31" cast as xs:date)

instance of Returns boolean if the value of the first operand
matches the type given in the second operand
 3 instance of xs:integer
would return “ true ”

treat as At run time, here is the type you should have;
postpone all checking till then, and fail then if the
type is wrong. The idea is to make static checking
work until dynamic checking cuts in at runtime.
May be useful for elements that can have two very
different potential models (an integer or the code
words "not applicable"; quantity-on-hand as a
number or as the word “out-of-stock”, any Ad-
dress or a more restricted “United States Address”,
etc.)
$myaddress treat as element(*, USAddress)

page 48

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 76

When an XPath Expression is Evaluated
(by an XSLT processor, for example)
The processor knows certain things to start:
• Context node (“which node am I processing now?”)

• in XSLT, typically the node that a template matches

• in Schematron, node named by @context attribute on <rule>
• Context size (“how many nodes am I processing with this one?”)

typically the number of siblings

• Context position (“of the nodes I am processing with this one, which one
is this?”)

• Equals size of current node list (list of nodes queued up with this one)

• First position is 1

• Other deep knowledge:

• Values assigned to variables in scope (in XSLT)

• All available functions

• Namespaces in XSLT stylesheet in scope (default namespace not included)

page 49

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 77

Comparison Operators in XPath and XSLT
• XPath 1.0 defines only general comparison  operators.

• General comparison operators  compare sequences of values. In XPath
1.0, only node sequences (node sets). XPath 2.0+ have sequence datatype
for sequences, atomic values for anything else.

• Value Comparison  operators compare individual values, not sequences of
values.

• Node Comparison  operators only work of nodes and concern node equal-
ity and relationships.

• XPath 2.0+ use all 3 types (Appendix D)

Operator Meaning General Compari-
son*

(for a sequence of
values)

All XPath/XSLT
Versions  

Value Com-
parison

(for single
values)

XPath/XSLT
2.0 and above 

Node Com-
parisons

XPath/XSLT
2.0 and
above 

equal = eq
not equal != ne
less than < (as <) lt
less than or equal to < =(as <=) le
greater than > (as >) gt
greater than or equal to >= (as >=) ge
equality of nodes is
left arg follows right
arg in document order

 >>

left arg precedes
right arg in document
order

 <<

page 50

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 78

VI. Tips, Traps, and Gotchas
(as time permits)

slide 79

Why You Want to be in XPath 2.0, 3.0, 3.1
• You can write your own functions! (priceless)

• Regular Expressions!

• Lots more functions and operators

• For data: real data types, sequences, XSD-aware

• XPath 3.0: Higher order functions! (a real language)

• XPath 3.1: maps and arrays for JSON

slide 80

Oxygen XPath Tools
• Are great tools!

• Let’s look at them

• XPath window choosing version

• Update XPath on cursor move

• XPath/XQuery Builder
Other editors and database UIs have similar tools

page 51

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 81

Quoted strings
What’s the difference between A and B?
• A. <xsl:value-of select="title">
• B. <xsl:value-of select="'title'">
• For A

• think element node

• think child::
• For B:

• think string

slide 82

In Attribute Values, “<” vs. “<”
(This is XML well-formedness, NOT an XPath problem!)
• “<” is an XPath operator

• ...character not allowed in an attribute value! (XML well-formedness)

• <xsl:if test="@position < 10">...</xsl:if>
...isn't well-formed! 

• In XML attribute values, express “<” as “<”

• <xsl:if test="@position < 10">...</xsl:if>
• XML parser reports “@position < 10” to processor...

...we're fine!

page 52

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 83

Don't Neglect the Obvious
sometimes the syntax can throw you
• Spaces around operands

• aren’t just a good idea

• but the rule

• “ big-dogs ” is a name

• “ big - dogs ” is arithmetic on elements

page 53

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 84

Test for Content Using normalize-space()
• Function normalize-space() trims extra whitespace from a string of text

• removes leading whitespace

• removes trailing whitespace

• reduces interior runs of whitespace characters to a single space

• If there’s nothing but whitespace in the string,
then nothing (an empty string: "") remains after this trimming

• So normalize-space(self::node()) tests true
only when the string tested has content besides whitespace 

<rule context="surname">
 <assert test="normalize-space(.)">Surname has no content</assert>
</rule>

Very Cool: This assertion will fail for all of these:

• <surname/>
• <surname> </surname>
• <surname>
</surname>

(In other words, if you clean up all the whitespace and there is nothing left,
the node is empty!)

page 54

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 85

Normalize Space Warning
• Use normalize-space()

• for testing for empty elements

• for any testing you want!

• to trim space from text-only nodes

• Do NOT use normalize-space()
• to trim space from mixed content nodes such as <p> or <title>
• normalize-space() works on strings and all interior markup will vanish

<title>Why <italic>E. coli<italic> are Harmful</title>

becomes
<title>Why E. coli are Harmful</title>

page 55

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 86

The Axis descendant-or-self:: is a Full Step
• You want to find the very last list item in the entire document, ignoring all

other list item nodes.

• This XPath won’t do that
//list-item[last()]

Why not? Let’s look at what that XPath means:
• The long form of that XPath is:

/descendant-or-self::node()/child::list-item[position()=last()]

• What this means: There are two steps, and the predicate only filters the
second step

• first all the descendant nodes are found

• then, for each one, the last child list-item is found

How do we solve it?
(//list-item)[last()]
(group the nodes with parentheses and apply the predicate to the whole
group)

page 56

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 87

Union Operator (“|”) vs. Boolean Operator
(“or”)
Do these do the same thing? (Why or why not?)
• <xsl:if test="title | body">...</xsl:if>

This is a union operator

• <xsl:if test="title or body">...</xsl:if>
This is a boolean

How about these?
• <xsl:if test="title='Preface' or body">...</xsl:if>

An xsl:if test on a string with any content is always true

• <xsl:if test="title='Preface' | body">...</xsl:if>
(Union of a string and a nodeset is always an error)

slide 88

Say It Ain’t So!
!= operator can lead to non-intuitive results: not() is usually safer.

• select="slide[@type!='intro']"
• Selects slide children (of the current node) that have a @type attribute,

where the value is NOT “intro”.

• Gotta have that attribute!

• If @type returns empty node set, it tests true as not equal to “intro”

• slide[not(@type='intro')]
• Selects slide children (of the current node) that do not have a @type

attribute whose value is “intro”.

page 57

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 89

Sequences Need their Boundaries! (optional)
Commas and parentheses make sequences,
and sequences are a single  thing

For example:
• The function min() returns the minimum value in a number or sequence 

• min((8, 5, 23)) returns 5
• min(6) returns 6 (six is just a number)

• But min(8, 5, 23) would return an error
min() needs a sequence, and we're giving it three numbers and some com-
mas

slide 90

Mulberry Quick Refs
Take one of each and take a look!

slide 91

Advanced Tips and Gotchas (optional)

slide 92

Select All Nodes Except
• In XPath 1.0: *[not(self::title)]
• In XPath 2.0 and 3.0:

(* except title)

How to select an empty node set:
• /.. or

• @text()

page 58

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 93

Some XPath 2.0 and 3.0+ Expressions
that behave  like document-order, no-duplicate node
sets
• Expressions that use the path operator “ / ”

• Expressions that reference an axis

• Expressions using the operators:

• union (|)

• intersect
• except

page 59

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 94

Be Careful for Context 
For Expressions and Location Paths are Different!

Location Paths For ... in ... return expres-
sions

Work with nodes Work on any sequence
Duplicates eliminated Duplicates allowed
Sorts results into document order No sort, input order retained
Each step is evaluated in turn, reset-
ting context node

Does not set context node

sum(for $n in child::name return concat($n/fname, ' ', $n/surname))

• Warning: the context for the return is the same as the context for the
whole for 

• So this will not  work as intended:
for $n in child::name return concat(fname, ' ', surname)

• Fix this with
for $n in child::name return concat($n/fname, ' ', $n/surname)

page 60

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 95

Surprise! Operators Can Force Document
Order
• You've sorted some employee records into a sequence

“$sorted-employees”

• Now that you have them, you want just the names

• The location path:
$sorted-employees/name

• would return the names in document order  not sorted

• because it contains a “/”

• (with thanks to Michael Kay for this example)

• You probably want
for $e in $sorted-employees return $e/name

slide 96

How to Use Types in a Type-free World
(DTD-valid or well-formed, for example)
You do not want something dealt with as “untyped-atomic”,
but you don’t have a schema.
Either:
• Cast a few types

• cast starts with an existing value and creates
a new value of the specific type

• Syntax
source-type   cast as target-type 

• Or make types using constructor functions
xs:date("2005-08-30")

page 61

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 97

VII. Colophon
• Slides and handouts created from single XML source

• Slides projected from HTML generated from XML using XSLT

• Print copy created from the same XML source

• XSLT transform generates XHTML

• Antenna House Formatter makes PDF from:

• XHTML

• CSS3 (slightly extended)

• Graphics sizing table

page 62

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix A

Answers to Short/Full Syntax Exercise
Full Syntax Abbreviated Syntax

self::node()/child::PROLOGUE/
child::TITLE

./PROLOGUE/TITLE

/descendant-or-self::node()/
child::STAGEDIR

//STAGEDIR

child::*/child::LINE */LINE
parent::node()/child::processing-
instruction("foo")

../processing-
instruction("foo")

attribute::bar @bar
Abbreviated Syntax Full Syntax
PERSONA child::PERSONA
./PGROUP self::node()/child::PGROUP
//FM/P /descendant-or-self::node()/child::FM/child::P
/ /
SCENE/LINE child::SCENE/child::LINE
../TITLE parent::node()/child::TITLE

page A-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

page A-2

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix B

Pattern Matching in XSLT and Schematron

Subset of XPath Used for Matching/Testing
A subset of XPath expressions are used in XSLT, Schematron, and elsewhere
for matching. This is an application of XPath that is defined in the XSLT/
Schematron specifications. When location paths are used as patterns, the
processor has already selected a node and the question is whether the node
matches the pattern. Basically matching works as follows:
• You have a node (an XSLT or Schematron engine or similar got it for you)

• You have an XPath expression called a “pattern”

• possibly as an XSLT <xsl: template match="pattern"
• possibly as a Schematron <rule context="pattern"

• The question is: “does the node you have match that pattern?”

• The answer is a boolean, true or false

Some Pattern Matching Examples

<xsl:template match="para"/>
Matches every element named para

<xsl:template match="*"/>
Matches any element

<xsl:template match="SECTION/TITLE"/>
Matches any element named TITLE, but only when the title is a child
of SECTION element

xsl:template match="employee[@category='critical']"/>
Matches any element named employee that has an attribute named
“category” that has a value of “critical”

page B-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Two Ways to Read the Same Location Path
The same XPath syntax can have a different meaning and reading depending
on where it is used. When an XPath location path is used as a “match pat-
tern” it is read and evaluated very differently from the same  location path
used as an expression, for example as the value of a select attribute. As an
example, take the XPath expression
 slide/title

As a match pattern, it matches any title element that is the child of a slide.
Patterns work right to left, testing one node at a time. (Are you a title? Is
your parent a slide?) The expression returns a Boolean: true or false.
As a location path, the expression is evaluated in relationship to the context
node (it is the short syntax form of child::slide/child::title). It returns
not a Boolean but a node set, “the title children of the slide children of the
context node”. Location paths are evaluated left to right, so, when evaluated
relative to the segment context node, this path selects the title children of
the slide children of segment. It goes like this:

• Find the segment (the context node)

• Get the slide children of that segment,

• Then get the title children of those slides

• Return a set of nodes (e.g., the selected titles)

Cheat Sheet: Location Paths in select Attributes
The table below provides samples of location path syntax when applied in an
XPath select expression. The table after this one illustrates many of these
same expressions as they are used in an XSLT “match” pattern.
Each expression is evaluated relative to an already-selected context node and
returns a node set.

Expression Returns
name name children of the context node
/ Root node
. The context node itself (equivalent to self::node())
.. The parent of context node (equivalent to parent::node())

page B-2

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Expression Returns
./name name children of the context node (equivalent to name and to

child::name)
.//name name descendants of the context node
//name name descendants of the root node
name1 |
name2

Union of name1 and name2 children of context node

../name name children of parent of context node (i.e., name sibling el-
ements, and context node if context node is name)

../@name name attribute of parent of context node
* All element children of context node
@* All attributes of context node
*/name All name grandchildren (i.e., name children of element chil-

dren) of the context node
name1/name2 All name2 children of name1 children of the context node
name1//name2 All name2 descendants of name1 children of the context node.

Includes all name2 children of name1 children of the context
node

//name[1] All name descendants of the root, that are the first name child
of their parents. Different from /descendant::name[1] (the
first name descendant of the root)

Location Paths in match Attributes
A match pattern specifies a set of conditions on a node. “A node matches a
pattern if the node is a member of the result of evaluating the pattern as an
expression with respect to some possible context”. The idea is that some
process (the XSLT processor) has already selected a node. Matches act as
tests on that node.
These expressions return a boolean true or false, either the node you have
matches the pattern or it does not.

page B-3

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Pattern Matches
name Any name element
/ The root node
* Any element node
@* Any attribute node
name1/name2 Any name2 element with name1 parent element
name1//name2 Any name2 element with name1 ancestor element
name1 | name2 Any name1 element or name2 element
text() Any text node
node() Any node that is a child of another node (i.e., because of

implicit child:: axis specifier, not the root or an attribute
node)

id("xx") The element with the unique ID “xx”
name[1] Any name element that is the first name child of its parent
@name Any name attribute
*[position()=1] Any element that is the first child of its parent

Match Patterns are a Subset of XPath Expressions
Patterns have been designed as a subset of XPath expressions (more particu-
larly, of XPath expressions that return node sets), and they have a few re-
strictions that do not apply to location paths in general.
Patterns may only look “down” the tree, so they may use /, //, child::, or
attribute:: axes. By the same reasoning therefore, they may not  contain:

• Axis names other than child:: and attribute:: (e.g., preceding-
sibling:: not allowed)

• . (self::node())

• .. (parent::node())

• Variable or parameter references
But a pattern may  include

page B-4

XPath: The Secret to Success with XSLT, XQuery, and Schematron

• | union operator (e.g., match="name | url")

• / operator (e.g., match="slide/title")

• // operator (e.g., match="//title")

• Predicates (as long as they contain no variable references)
Patterns may also use the id() or key() functions (though again, without
variable references).

page B-5

XPath: The Secret to Success with XSLT, XQuery, and Schematron

page B-6

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix C

A Few XPath Functions

Number Functions
XPath deals with numbers (Like 1, 2 and 8) and converts things like strings
into numbers. XPath numbering includes:
• Positive and negative numbers

• Not-a-Number (NaN)

• Positive zero

• Negative zero

• Positive infinity

• Negative infinity
The function number(expr), when asked to convert:

1. Number: produces the number

2. String: if parses as number, convert, otherwise NaN
"Debbie" versus "42"

3. Boolean: true=1, false=0

4. Node-set: convert to string, then evaluate

number(expr) Examples

Expression (convert to a number) Returns Rule
number(42) 42 #1 Number
number(1 > 2) 0 #3 Boolean
number("XPath") NaN #2 String
number("42") 42 #2 String

Numeric operations include:
• Addition, subtraction, division, rounding, etc.

• 5 + 2 returns 7

page C-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

• round(13 div 3) returns 4
• Warning: division operator is div, not /
• Use mod for a remainder, e.g.,

• 5 mod 2 returns 1
• 6 mod 2 returns 0

Numeric Expressions

+ Add arguments
- Subtract arguments
* Multiply arguments
div IEEE 754 floating point division
mod Return remainder from integer division operation
ceiling(expr) Return smallest (closest to negative infinity) integer not less

than expr
floor(expr) Return largest (closest to positive infinity) integer not

greater than expr
round(expr) Return integer closest to expr. If two such numbers, return

number closer to positive infinity.
sum() Sum values of nodes in node-set

Numeric Function Examples

Expression Returns
1 + 1 2
1 - 1 0
2 * 2 4
9 div 2 4.5
9 mod 2 1
floor(4.5) 4
ceiling(4.5) 5

page C-2

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Expression Returns
round(4.5) 5
floor(-4.5) -5
ceiling(-4.5) -4
round(-5.5) -5
round(5.5) 6

String Functions (type xs:string)
String functions are probably the most commonly used in XPath for docu-
ments. You can compare strings, concatenate strings, make upper case into
lower (or reverse), and such like. Strings are just sequences of characters
(UCS [Universal Character Set] characters, using the same character set that
the XML Recommendation uses.)
In XML, pretty much everything is a string, but you can use the string()
function to convert other objects to strings. XPath 1.0 will coerce things into
strings if a string function is used.
Warning for programmers: Substring expressions count first character as 1
(one), not 0 (zero)!
When an object is converted into a string:
• Sequence of nodes: return value of first node, or empty string if empty

node-set

• Number: return string in form of number (“42”)

• NaN returns "NaN"
• Positive zero returns "0"
• Negative zero returns "0"
• Positive infinity returns "infinity"
• Negative infinity returns "infinity"

• Boolean: return "false" if false, return "true" if true

All of the XPath 1.0 String Functions

concat($string...) Return concatenation of arguments

page C-3

XPath: The Secret to Success with XSLT, XQuery, and Schematron

contains($string1,
$string2)

Return true if first argument string contains second
argument string, otherwise false

normalize-
space($string)

Return argument string after stripping leading and
trailing white space and reducing multiple white-
space characters to single space. Works only on
strings!

starts-
with($string1,
$string2)

Return true if first argument string starts with sec-
ond argument string, otherwise false

string-
length($string?)

Return number of characters in the string. Argu-
ment defaults to string value of context node.

substring($string,
$number, $number?)

Return substring of first argument starting at sec-
ond argument with length specified by third argu-
ment

substring-
after($string1,
$string2)

Return substring of first argument string following
first occurrence of second argument string in first
argument string, otherwise return empty string

substring-
before($string1,
$string2)

Return substring of first argument string preceding
first occurrence of second argument string in first
argument string, otherwise return empty string

translate($string1,
$string2, $string3)

Return first argument string with occurrences of
second argument string replaced by corresponding
characters from third argument string

String Examples for the Functions Just Described

Expression Returns
concat("Four ", "score ", "and seven") "Four score and

seven"
contains("Four score and seven", "core") True
contains("Four score and seven", "four") False
normalize-space(" foo
 bar ") "foo bar"
starts-with("foo", "f") True

page C-4

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Expression Returns
starts-with("bar", "f") False
string-length("Four score and seven") 20
substring("Four score and seven", 4, 7) "r score"
substring-after("Four score and seven",
"core")

" and seven"

substring-after("Four score and seven",
"four")

""

substring-before("Four score and seven",
"core")

"Four s"

substring-before("Four score and seven",
"four")

""

translate("bar", "abc", "ABC") "BAr"
translate("EN-us", "ABCDEF...YZ", "abc-
def...yz")

"en-us"

upper-case("iso sts") ISO STS
matches("Ides of March", "Ides | April") true
tokenize('March 15, 44BCE','([] | ,)+') ('March', '15',

'44BCE')
replace('March 15, 44BCE','BC[E]?' , ' before
the Common Era')

'March 15, 44 be-
fore the Common
Era'

Selected XPath 2.0 and 3.0 String Functions

upper-case($string) Translates each character to upper-
case (or returns it unchanged if there
is no equivalent)

lower-case($string) Translates each character to lower-
case (or returns it unchanged if there
is no equivalent)

page C-5

XPath: The Secret to Success with XSLT, XQuery, and Schematron

compare($string1,$string2,$colla-
tion?)

Returns which string (of two strings
given) appears first in a given colla-
tion (or the processor's default colla-
tion)

ends-with($string1,$string2) Like starts-with() (still in XPath
2.0) except inspecting the end of a
string

string-join($sequence,$separator) Concatenates all the strings given in
a sequence, using an optional sepa-
rator between adjacent strings

String Expressions Using Regular Expressions 

matches($string,$regex,$flags?) Returns boolean to indicate if string
matches regular expression; matches
if any substring matches (unless an
anchor ^ or $ is used)

replace($string,$regex,$replace-
ment,$flags?)

Constructs an output string by re-
placing parts of the input string that
match regex (while copying non-
matching substrings); replacement
string can reference matched sub-
strings

tokenize($string,$regex,$flags?) Splits a string into a sequence of
substrings (tokens) as delimited by
separators that match the regex

String Examples for the Functions Just Described

Expression Returns
upper-case("iso sts") ISO STS
lower-case("ISO STS") iso sts
compare('abc', 'abc)' 0
compare('abc', 'def') -1
ends-with("Mulberry", "berry") true

page C-6

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Expression Returns
string-join(('John', 'Paul', 'George',
'Ringo'), "!")

John!Paul!George!Ringo

matches("Ides of March", "Ides | April") true
replace('March 15, 44BCE','BC[E]?' , ' be-
fore the Common Era')

'March 15, 44 before
the Common Era'

tokenize('March 15, 44BCE','([] | ,)+') ('March', '15',
'44BCE')

Boolean Functions
• Boolean objects can have two values

• true
• false

• Operators include

• and
• or
• comparison operators (e.g., <, >=)

• equality operators (=, !=)

• Function boolean(expr)converts the required argument to a boolean:

• Number: true iff not positive zero, negative zero or NaN (Not a Num-
ber)

• Node-list: true iff non-empty

• String: true iff length is non-zero

Boolean Function Examples

Expression Returns
boolean(1) True
boolean(1 + "XSL") False
boolean("XSL") True

page C-7

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Expression Returns
boolean("") False

Boolean Functions

not(expr) Returns true if argument false, and false otherwise
true() Returns true
false() Returns false
lang(string) Returns true if string matches language of current (Case in-

sensitive!)

Sequence of Nodes (Node Set) Functions
• Location paths can be used as expressions

• Result is node set selected by path

• “node-set|node-set ” returns union of node-sets

• “node-set[expr]” filters node-set

Node Set Functions

count(node-set) Returns number of nodes in node-set
id(object) Returns node-set containing element in same docu-

ment with ID equal to any token in string value of ob-
ject

last() Returns number equal to context size
local-name(node-
set?)

Returns local part of name of first node in node-set

name(node-set?) Returns combined prefix, colon, and local part of first
node in node-set

namespace-
uri(node-set?)

Returns namespace of name of first node in node-set

position() Returns number equal to context position. First posi-
tion is 1, last equal to last()

page C-8

XPath: The Secret to Success with XSLT, XQuery, and Schematron

XPath 2.0 and 3.0 Functions for Sequences
There are Bunches of Functions for Sequences

• Basic list manipulation

• insert-before($sequence,$position,$insertion) and remove()
• reverse($sequence)
• index-of($sequence,$item,$collation?) returns position of $item in
$sequence (starting at 1)

• a collation may be used to affect string comparison

• distinct-values($sequence) returns the distinct values in the sequence
(de-duplicates values)

• subsequence($sequence,$start,$length?) — like substring($se-
quence,$start,$length?) for sequences

• Test cardinality in sequences

• deep-equal($sequence1,$sequence2) (are these sequences pair-wise
really, really equal)

• Perform math on items in a sequence

• count($sequence)
• average($sequence)
• max($sequence)
• min($sequence)
• sum($sequence)

As well as sequence generation functions dealing with IDs and IDREFs,
document availability testing, and document collections

Numerous Functions for Durations, Date and Time

• Addition and subtraction of dates and durations

• Multiplication and division on a few types

• Timezone adjustments

page C-9

XPath: The Secret to Success with XSLT, XQuery, and Schematron

• Comparisons (less-than, greater-than, equal) for: date, month, time, time-
Duration, YearMonth, MonthDay, etc.

XPath 2.0 and 3.0+ Quantified Expressions
Quantified expressions use the operators some and every.

• They indicate whether an expression satisfies these conditions?

• Both return a boolean; it satisfies or it does not

• some: test if at least one item in expression satisfies the condition
some $variable in expression satisfies expression

• every: tests if all values in expression satisfy the condition
every $variable in expression satisfies expression

As an example:
some $x in /students/student/name satisfies $x = "Steve"

(With thanks to Evan Lenz for the example)

XPath 2.0 and 3.0+ have Conditional Expressions
if ... then ... else...

• Evaluate an expression

• If true, evaluate then branch

• If false, evaluate else branch

• Then return the result of the evaluation

• Syntax
if (test-expression)
then expression
else expression

• Example
if ($part/@discounted)
then $part/wholesale
else $part/retail

page C-10

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix D

XPath Operations

Comparison Operators in XPath and XSLT
• XPath 1.0 defines only General Comparison operators.

• General Comparison operators compare sequences of values. (XPath 1.0
has only node sequences/nodesets; XPath 2.0 and 3.0 have a sequence da-
tatype for sequences of nodes, atomic values, anything.)

• Value Comparison operators compare individual values (not a sequence of
values, only a single-item sequence)

• Node Comparison operators work only on nodes and concern node equal-
ity and relationship between the nodes in the tree.

• XPath 2.0 and 3.0 have all three comparison types.

Operator Mean-
ing

General Compar-
ison* (for sequen-

ces of values)
All XPath versions

Value Compari-
son (for single

values)
XPath 2.0 and 3.0

Node Compari-
sons

XPath 2.0 and 3.0

equal = eq
not equal != ne
less than < (as <) lt
less than or equal
to

<= (as <=) le

greater than > gt
greater than or
equal to

>= ge

equality in nodes is
left arg follows
right arg in docu-
ment order

>>

page D-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Operator Mean-
ing

General Compar-
ison* (for sequen-

ces of values)
All XPath versions

Value Compari-
son (for single

values)
XPath 2.0 and 3.0

Node Compari-
sons

XPath 2.0 and 3.0

left arg before
right arg in docu-
ment order

<<

* If you have old XSLT 1.0 programs, they may run unchanged in XSLT 2.0
and 3.0. If there are type errors, in XSLT 2.0 and above, the “XSLT 1.0 com-
patibility switch” can make General Comparisons work almost exactly as
they do in XSLT 1.0. Without the compatibility switch, there are some dif-
ferences in when and how values of one type are converted to values of an-
other type for comparison.
The next few pages explain all these operators in more detail.

Several Types of Operators Over Items
• Arithmetic operators

• Boolean operators

• Node comparison operators

• Comparison operators, which may be considered as two types:

• Value comparisons

• General comparisons

Arithmetic Operators
Arithmetic operators are just what you’d expect from elementary math class.
They handle the simple operations like addition and subtraction. Arithmetic
operators are used on:
• numbers (xs:integer, xs:decimal, etc.)

• on dates and durations too.

Operator Operation
+ Addition
- Subtraction

page D-2

XPath: The Secret to Success with XSLT, XQuery, and Schematron

* Multiplication
div Division
idiv Integer Division
mod Modulo

Boolean Operators
There are two boolean operators: “ and ” and “ or ”, which compare expres-
sions and return boolean values of “ true ” or “ false ”. Conterintuitively,
there is no “ not ” operator; the not function (forgive the pun) is provided as
a function, not() rather than as an operator.

• A series of booleans can be strung together:
(x or y or z or w or j or d or q)

• Parenthesis may be used as needed.

• The and operator is of higher priority than the or operator,
so (x and y or a and b) would resolve to
((x and y) or (a and b))

Operator Operation
and Returns “ true ” if the two expressions it connects are both true
or Returns “ true ” if either of the two expressions it connects is

true
not() Not an operator. The not() function returns “ true ” if the argu-

ment is false

Node Comparison Operators
Since nodes now come in ordered list instead of sets, it is possible to com-
pare any two nodes, and there are node comparison operators to make that
possible. These operators can be used to compare two nodes:
• by identity, or

• by document order
The general syntax is as follows, with the operator used between two node
operands:

page D-3

XPath: The Secret to Success with XSLT, XQuery, and Schematron

leftoperand operator rightoperand

Operator Operation
is True if operands have the same identity, otherwise false
<< True if the left operand precedes the right (in document order),

otherwise false
>> True if the left operand follows the right (in document order),

otherwise false

Operators for Combining Sets of Nodes
• Uses sequences to simulate node sets

• Results are returned in document order

• Given two sequences of nodes:

union (“|”) Include a node in the result if it is present in either sequence
intersect Include a node in the result if it is present in both sequences

(all items in common)
except Include a node in the result if it is present in the first sequence

but not the second (difference between)

except — The except operator can make code much easier to read. For ex-
ample the convoluted XPath 1.0 expression:
child::*[not(self::p)]

Can be done easily in XPath 2.0 and 3.0+ as:
(child::* except child::p)

intersect — returns pb elements preceding the context inside the same
(closest) div:
(preceding::pb intersect ancestor::div[1]//pb)

• Given the sequence $nodes = (para, list, table, figure)
• Short for (child::para, child::list, child::table, child::fig-
ure)

• All para children, then all list children, then all table children, then
all figures...

page D-4

XPath: The Secret to Success with XSLT, XQuery, and Schematron

• ... in that order

• All these will sort this sequence back into document order!

• $nodes | $nodes

• $nodes | ()

• $nodes intersect $nodes

• $nodes except ()

• $nodes/.

Value Comparison Operators
These values are used for atomic values, replacing the XPath 1.0 operators
(=, !=, <, >, >=) which are used for sequences. They may be more useful
when dealing with untyped data. Value comparison operators are:
• Used to compare single values

• May be used on numbers (xs:integer, xs:decimal, etc.).

• Result in true or false
Operands are “atomized” before comparison
• An empty sequence returns an empty sequence

• More than one value is an error
//product[weight gt 100]

Operands are “atomized” before comparison

Table of Value Comparison Operators

Operator Operation
eq Equal
ne Not equal
lt Less than
le Less than or equal
gt Greater than
ge Greater than or equal

page D-5

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Atomization
The process of atomization is used to turn a sequence into a sequence of
atomic values. This may occur in arithmetic expressions, comparison expres-
sions, function calls, or casting expressions. The process is applied to each
item in a sequence, with the result being either
• a sequence of atomic values, or

• a type error.
The process works essentially like this. Each item in a sequence is examined
and
• if it is an atomic value, uses that value,

• if it is a node, uses its typed value, or

• if it is neither, returns an error.

General Comparison Operators
The general operators are the ones that used to be used in XPath 1.0 (=, !=,
<, >, >=). In XPath 2.0, one important distinction is that either side of the
expression between the operators can be an expression  instead of just a
value. The general comparison operators:
• May compare values or sequences

• Result is true or false.
• Before comparison, atomization is applied to each operand, producing a

sequence of atomic values.

• Rules are different under backwards compatibility mode.
Another major difference is that these operators working on untyped data 

work differently in XPath 2.0 than they did in XPath 1.0. In XPath 1.0, no-
des did not have types. What happened in a node comparison depended on
what kind of operator was being used and whether the node value was con-
vertible to, for example, a number. (The string "42" can convert to an inte-
ger, the string "Debbie" cannot.) In XPath 1.0, if you asked if “ a < b ” and a
was “ 3 ” and b was “ 10 ”, the comparison would be done as if the a and b
were both numeric, and the answer would be true. In XPath 2.0, if a and b
are untyped, they will be treated as strings. So “ a < b ” is are not compared
numerically, and it is “ false ”.

page D-6

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Table of General Comparison Operators

Operator Operation
= Equal
!= Subtraction
< Multiplication
<= Division
> Integer Division
>= Modulo

Built-in Operator Precedence: Beyond My Dear Aunt
Sally
XPath 2.0 Operators have built-in precedence 

• If precedence is equal proceed left-to-right

• (x + y - z) is really

• (x + y) - z
• Higher items (in the chart on the next slide) bind before lower items

• x or y and z is really

• x or (y and z)
• Items of a lower precedence cannot be contained by operators of a higher

precedence
Operator Precedence 

Operators listed from highest to lowest
(commas act as separators between operators below)

• (), [], { }
• /, //
• ?, *(as an occurrence indicator), +(same)

• -(unary), +(unary)

• cast

page D-7

XPath: The Secret to Success with XSLT, XQuery, and Schematron

• castable
• treat

• instance of
• intersect, except
• union, |
• *, div, idiv, mod
• + , -
• to
• eq, ne, lt, le, qt, =, !=, <. <=, >, >+, is, >>, <<
• and
• or
• for, some, every, if
• , (comma)

page D-8

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix E

XPath 2.0 and 3.0 Data Model (advanced,
optional)
Data Model for XPath 2.0, XPath 3.0, and XPath 3.1 has three conceptual
building blocks
• Trees made up of nodes (just like XPath 1.0)

• Atomic values (integers, strings, booleans, etc.)

• Sequences of “items”

• an item is an atomic value or a reference to a node

• each item has a value and a type (xs:integer, xs:string, etc.)

• a single item is considered to be a sequence containing one item

• a sequence cannot be a member of a sequence
(Why define atomics and sequences? Because atomics and sequences represent intermediate re-
sults during expression processing!)

Sequences
• Location paths in XPath 1.0 return node sets

• Location Paths in XPath 2.0 return sequences

• Node sets

• have no duplicates

• have no intrinsic order

• Sequences

• are an ordered collection (list)

• of zero, one, or more items  (not just nodes)

• may well have duplicates
In XPath 1.0 there were
“sets” of “nodes”
• XPath 1.0 centered its view on an XML document as a tree of nodes

page E-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

• Nodes have identity

• Node sets are unordered  collections of nodes

• usually fall back to document order

• sometimes (reverse axes) use reverse document order

• Nodes (and their subtrees) can be copied, but references to them cannot
be multiples

In XPath 2.0/3.0+ there are
“sequences” of “items”
• XPath 2.0 does not center on a single document tree, but on arbitrary data

sets

• These can be arranged in “sequences” of “items”

• sequences are lists, ordered sets of

• pointers to nodes (which still have identity) and

• simple-typed values 

• may contain duplicates

• count($node-set) = count($node-set | $node-set) is still true
(due to semantics of “|”, the union operator)

• But now we can also say ($node-set , $node-set)
• A sequence of all the nodes in $node-set, then all the same nodes

again 

XPath 2.0 and 3.0 are All about sequences. A sequence is an ordered collec-
tion of zero or more items:
• All expressions return sequences

• All values are in sequences

• A singleton is a one-item sequence

• The empty sequence is a valid sequence

• Members of sequences (unlike nodes) do not have identity

• All sequences are ordered

page E-2

XPath: The Secret to Success with XSLT, XQuery, and Schematron

• Duplication is allowed inside sequences!

• Sequences cannot nest (one level only)

• if $seq = (x, y, z),

• then (a, b, $seq, y, c) evaluates to

• (a, b, x, y, z, y, c)

Examples of Sequences
• A document root (and therefore a document)

• One node (and therefore a subtree)

• A series of nodes and/or document roots

• A string value (like “42”)

• An integer value (like 42)

• A series of strings, integers, and/or nodes

• A set of nodes described by an XPath expression, in an order

• The results of evaluating an XPath expression (say, a series of strings or
dateTime values)

(All the world’s a sequence!)

Constructing Sequences
• The comma operator “,”

• means concatenation (of items, not strings)

• makes sequences: (a, 1, w)
• Members of sequences (unlike nodes) do not have identity

• Sequences cannot nest (one level only)

• if $seq = (x, y, z), then (a, b, $seq, y, c) evaluates to

• (a, b, x, y, z, y, c)
• Remember, duplication is allowed inside sequences!

page E-3

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Sequences can Contain Atomic Types
• Identified by the namespace: xmlns:xs="http://www.w3.org/2001/
XMLSchema"

• A type derived from another atomic type in a schema, by restriction 

• All XSLT processors support a minimal set, even without a Schema:

• xs:boolean
• xs:decimal
• xs:double
• xs:integer
• xs:string
• xs:QName
• xs:anyURI
• xs:dayTimeDuration
• xs:date
• xs:time
• xs:dateTime
• xs:yearMonthDuration
• xs:anyAtomicType
• xs:untyped
• xs:untypedAtomic

(May also support other W3C XML Schema primitive types)

Expressions for Sequences
Constructing Sequences
The comma operator “, us used to create sequences, for example, (a, 1,
w)”

• means concatenation (of items, not strings)

page E-4

XPath: The Secret to Success with XSLT, XQuery, and Schematron

• The sequence (p, list, table, figure)
• these are nodes in a tree

• they still have axes

• all p children followed by all list children, followed by all tabled chil-
dren, followed by all figure children

Another way to construct sequences uses the “to operator:”
expression to expression

• Each expression must evaluate to an integer

• first integer must be smaller than the second

• Makes consecutive integers in ascending order

(1 to 10) makes (1,2,3,4,5,6,7,8,9,10)
(10, 1 to 3) makes (10, 1, 2, 3)
1 to count($some-sequence) Returns the position number of each

item in the sequence $some-sequence
reverse(5 to 10) Evaluates to (10, 9, 8, 7, 6, 5)
Sequences Take Filters
Like predicates on paths, sequences can be filtered using “[]”

• Predicates come in two styles

• numeric: e.g. $seq[3]
• predicated value is a number; returns item in that position

• i.e., indexes into the sequence

• boolean: e.g. $seq[@rating = 'good']
• keep any item, for which predicate tests true

• $seq[position()=3] is numeric predicate as boolean

• The original order is retained

• (p, list, table)[descendant::note]
A sequence of all the ps, lists, and tables. but only if they have note de-
scendants.

page E-5

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Iterate Over Sequences Using for Expressions

for $variable  in sequence  return expression 

• Performs iteration over sequences

• Like XSLT <xsl:for-each> except inside an XPath expression

• Apply an expression to every item in a sequence

• Returns a sequence of the items returned by the mapped expression

• Can work across multiple sequences

• Both 1-to-1 mapping and 1-to-many mapping are possible
for $n in child::name
return concat($n/fname, ' ', $n/surname)

for $id in distinct-values(//@idref)
return count(key('elements-by-id',$id))

for $d in (0 to 6)
return (current-date() +
($d * xs:dayTimeDuration('P1D')))

sum(for $i in order-item return $i/@price * $i/@qty)
Sorting into document order

• Given the sequence $nodes = (para, list, table, figure)
• Short for (child::para, child::list, child::table, child::fig-
ure)

• All para children, then all list children, then all table children, then
all figures...

• ... in that order

• All these will sort this sequence back into document order!

• $nodes | $nodes

• $nodes | ()

• $nodes intersect $nodes

• $nodes except ()

• $nodes/.

page E-6

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix F

ancestor Axis Example

Axis specifier Node set
ancestor:: article-meta, front, article, /

page F-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix G

ancestor-or-self Axis Example

Axis specifier Node set
ancestor-or-self:: article-categories, article-meta,

front, article, /

page G-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix H

child Axis Example

Axis specifier Node set
child::node() subj-group

page H-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix I

descendant Axis Example

Axis specifier Node set
descendant:: subj-group, subject, "Methodology"

page I-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix J

descendant-or-self Axis Example

Axis specifier Node set
descendant-or-self:: article-categories, subj-group,

subject, "Methodology"

page J-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix K

following Axis Example

page K-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Axis specifier Node set
following:: title-group, article-title, "Music

Notation ...", contrib-group ... and
all its descendants ... , aff (with
@id="l1"), label, 1, "Department
of ...", aff (with @id="l2") ... and all
its descendants ... , <?more?> process-
ing instruction, <?more?> processing
instruction, <?more?> processing in-
struction

page K-2

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix L

following-sibling Axis Example

Axis specifier Node set
following-sibling:: title-group, contrib-group, aff

(with @id="l1"), aff (with @id="l2"),
<?more?> processing instruction

page L-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix M

parent Axis Example

Axis specifier Node set
parent:: article-meta

page M-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix N

preceding Axis Example

page N-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Axis specifier Node set
preceding:: "10.1186/1742-9994-3-18", article-

id (with @pub-id-type="doi"),
"17112384", article-id (with @pub-
id-type="pmid"), 1742-9994-3-18,
article-id (with @pub-id-
type="publisher-id"), "London,
publisher-loc, "BioMed Central",
publisher-name, publisher,
"1742-9994", issn, "Frontiers in
Zoology", journal-title, "Front
Zool", journal-id, journal-meta

page N-2

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix O

preceding-sibling Axis Example

page O-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Axis specifier Node set
preceding-sibling:: article-id (with @pub-id-

type='doi'), article-id (with @pub-
id-type='pmid'), article-id (with
@pub-id-type='publisher-id')

page O-2

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix P

self Axis Example

Axis specifier Node set
self:: article-categories

page P-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Sample	 XPath	 Select	 Expressions	 for	 Practice	

Let’s	 Review	 the	 Basics	

Here	 are	 a	 few	 simple	 XPath	 expressions,	 that	 could	 be	 used	 in	 a	 @select	 expression,	
that	 is,	 in	 relationship	 to	 a	 context	 node,	 not	 used	 to	 set	 context	 or	 match	 a	 pattern.	

	
sec/title All the <title> children of the <sec> children of the

context node
sec//title All the <title> children of all of the node children of

the <sec> children of the context node
../title <title> children of the parent of the context node
@* All the attributes of the context node
/descendant::title[1] The first <title >descendent of the root
//title[1] All <title> descendents of the root that are the first

<title> child of their parent
name | collab | email The union of the <name> and <collab> and <email>

children of the context node
./title <title> children of the context node.

(This could also be written as ‘child::title’ or as
‘title’.)

//list[ancestor::list] All <list> elements in the document that have a
<list> ancestor

table-wrap/caption All <caption> children of the <table-wrap> children
of the context node

table-wrap[caption] All <table-wrap> children of the context node, if and
only if they have a <caption> child

sec[title='Acknowledgements'] All <sec> children of the context node that have a
<title> child whose text value is
‘Acknowledgements’

sec[contains(title,
‘Acknowledgements']

All <sec> children of the context node that have a
<title> child whose text value contains the string
‘Acknowledgements’

following-sibling::*[1] First following sibling element of the context node
preceding-sibling::*[1] Most recent following sibling element (reverse axis)

of the context node
count(descendant::span)	 The number of element descendants of the

context node
sec[label and title] All the <sec> element children of the context node

that have both <label> and <title> element children
sec[@sec-type='chapter'] All the <sec> element children of the context node

that have a @sec-type attribute with a value of
“chapter”

Now	 with	 a	 Little	 More	 Context	
//caption[count(*) > 1 or not(p)] All	 the	 captions	 in	 the	 document	 that	

have	 more	 than	 one	 child	 element	 or	 do	
not	 have	 a	 <p>	 child	 element	

//sec[title | p] All	 <sec>	 elements	 in	 the	 document	 if	
they	 have	 either	 a	 <title>	 or	 a	 <p>	 child	 	

//graphic[starts-with(@href,'http://')] All <graphic> elements in the document,
that have an @href attribute that begins
with the string “http://”.

sec[@sec-type='chapter']/title	 The	 <title>	 children	 of	 the	 <sec>	
children	 of	 the	 context	 node,	 for	 the	
<sec>	 elements	 that	 have	 a	 @sec-‐type	
attribute	 with	 the	 value	 ‘chapter’	

item[not(following-sibling::item)]	 <item>	 children	 of	 the	 context	 node	 that	
do	 NOT	 have	 a	 following	 sibling	 that	 is	
also	 an	 <item>	

"//xref[@rid = current()/@id]"	 All	 the	 <xref>	 elements	 in	 the	 document	
for	 which	 the	 @rid	 attribute	 of	 the	
<xref>	 is	 the	 same	 as	 the	 @id	 attribute	
of	 the	 context	 (here	 the	 current)	 	
element	

sec[@sec-type='intro']//title	 All	 the	 <title>	 descendents	 (whether	
section	 titles,	 figure	 title,	 table	 title,	
whatever)	 of	 all	 the	 node	 children	 of	 the	
<sec>	 child	 of	 the	 context	 node	 that	 has	
a	 @sec-‐type	 attribute	 with	 a	 value	 of	
“intro”	

count="table-wrap |
table[not(ancestor::tablewrap)]"	

Count	 the	 number	 of	 <table-‐wrap>	
elements	 plus	 the	 number	 of	 <table>
elements that do not appear inside a
<table-wrap

../label | self::title	 The	 <label>	 child	 of	 the	 parent	 of	 the	
context	 node,	 or	 the	 context	 node,	 if	
that	 node	 is	 a	 <title>	 element.	

not(position()=1) and position()=last() The	 context	 node	 is	 the	 last	 among	 its	
siblings	 and	 not	 also	 the	 first	 among	
them.	

//xref[@rid = $id]	 All	 the	 <xref>	 elements	 in	 the	
document,	 for	 which	 the	 @rid	 attribute	
of	 the	 <xref>	 equals	 a	 variable	 named	
$id	

<xsl:variable
name="published"
select="/article/front/article-
meta/issue and
not(/article/@preview='yes')"/>

If there is an <issue> element in the article
metadata, and the <article> has no
@preview attribute of ‘yes’, then the
$published variable is set to true [true()].

