XPath: The Secret to Success with
XSLT, XQuery, and Schematron

Debbie Lapeyre

Mulberry Technologies, Inc.
17 West Jefferson St.

Suite 207

Rockville MD 20850

Phone: 301/315-9631

Fax: 301/315-8285
dalapeyre@mulberrytech.com
http://ww. mul berrytech. com

Version 1.0 (October 2017)
©2017 Mulberry Technologies, Inc.

Mulberry
Technologies, Inc.

http://www.mulberrytech.com

XPath: The Secret to Success with XSLT, XQuery, and Schematron

XPath: The Secret to Success with XSLT,
XQuery, and Schematron

I. Objectives 0f the COUISeot 1
AFewExamplesof XPath 2
I1. Looking at an XML DOCUMENt it 3
Getting froman XML DocumenttoaTreeovu vt 4
Seven Typesof Nodesinthe Tree i 5
Nodes Have Name and/or Value Propertiescco ... 6
Tree Terms: parent, child, sibling 7
Tree Terms: Document Order e 8
Tree Terms: ancestors, descendantS 9
Makinga Tree of NOdeSo e 10
Optional Exercise, MaKing a Treettt 10
L What is XPath? 11
XPath = The XML Tree-walking Language, 11
XPath has Three Main USES oot 12
The XPath 1.0 Data Model: TreesNot Text 13
Axes: How XPath Talks Aboutthe Tree i, 14
SYNtAX FOr AXES . . ot e 14
The 13 XPath AXESo e e 15
Let’s Learnthe AXESot e 15
Optional Exercise: Gathering Nodes By an AXiS, 15
Five Axes Cover All a Document’s Elements from Anyplace.............. 16
The Peculiarities of Attributes 16
XPath Location Paths Walkthe Tree i 17
Each Location Step Has At Least Two Parts 18
AStepWith Three Parts e 18
Absolute Location Path 19
Relative Location Path 19

A More Complex Location Path (optional)o oo 23
XPath Node TeStS . .. oo e e 26
Node Testing by Name 26
Node Testing by TYpeot 27
Node Testing by Explicit SchemaData Type, 28
For Reference: More Node Tests (optional) . . . oo oo i i e e 29
Expressions in Location Paths (optional) i 29
Filters (Predicates)o 30
Examplesof Filters o 31
One Step Can Take Many Filters 31
Examplesof XPath 32
Readingan XPath 33
XPath Short and Long Syntax 34
Heads-up: Long and Short Syntax 34
Abbreviations to Make Short Syntax i i 35
Short Syntax Simplifies EXpPressions, 35
Optional Exercise: Longand Short Syntaxt 36

XPath: The Secret to Success with XSLT, XQuery, and Schematron

From Full to Abbreviated 36
From Abbreviatedto Full 37
IV. Match Patterns are A Subsetof XPath 38
The XPath of Match Patterns i e 39
Examples of Using Match Patterns 40
SoWhatisthe Problem? 40
APlainOld Location Path 41
Same Location Pathasa Pattern 41
V. XPath is an “Expression Language” (advanced) 42
Functions and Operatorso v vt 43
More Examples of Functions (optional)o v 44
For Reference: Some Useful Functions (optional)t ... 45
All Functions, Expressions, Operators Work on TypedData 45
Most Common Types for EXpressions 46
XPath 1.0 Assumes Automatic CastingBetween Data Types.................. 46
XPath 1.0 Rules for Converting ObjectstoBooleans 47
XPath 2.0 and XPath 3.0 Typesare Explicit............... 47
Type FUNCHIONS (0ptional) . .« « . vt e et et e e e e e et 48
When an XPath ExpressionisEvaluated 49
Comparison Operators in XPathand XSLT 50
VI Tips, Traps, and GOtChaso e e 51
Advanced Tips and Gotchas (optional)o 58
VI Colophon 62
Appendixes
Appendix A: Answers to Short/Full Syntax Exercise 1
Appendix B: Pattern Matching in XSLT and Schematron........................ 1
Appendix C: AFew XPath Functions i e 1
Appendix D: XPath Operationst 1
Appendix E: XPath 2.0 and 3.0 Data Model (advanced, optional) 1
Appendix F: ancestor AXiISEXample i 1
Appendix G: ancestor-or-self AXiSExample i 1
Appendix H: chilld AXISEXample 1
Appendix I: descendant AXiSExample 1
Appendix J: descendant-or-self AxisExample 1
Appendix K: following AXISEXampleo 1
Appendix L: following-sibling AXiSExample 1
Appendix M: parent AXISExample 1
Appendix N: preceding AXiSExample 1
Appendix O: preceding-sibling AXiSExample L. 1
Appendix P:self AXiS Example 1

Page ii

XPath: The Secret to Success with XSLT,
XQuery, and Schematron

slide 1

|. Objectives of the Course

» XPath 1.0 data model (thorough understanding)
* Location Paths (thorough understanding)
 Long and Short XPath Syntaxes (familiarity)

» XPath 2.0 and higher Data Model (exposure)

 Functions and Operators (exposure)

Almost all of XPath 1.0, some 2.0, mention of 3.0, three words on 3.1

slide 2

This is Not New Technology

o XPath 1.0 1999 (used by programming languages)
o XPath 2.0 2007 (better! a weak programming language)

» XPath 3.0, 2014 (Turing complete programming language, supports
streaming, higher order functions)

» XPath 3.1, 2017 (JSON-like maps and arrays)

(You need the fundamentals of XPath 1.0/2.0 before you learn XPath 3.0
[maybe])

%Mulberry page 1
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 3

A Few Examples of XPath

We are going to learn to read these

//title

Returns all titles in the document

p[1]

Returns the first p element child of the context
node*

attribute::security

The “security” attribute on the context node*

//div[@type="chapter™]/
figure

Returns all figure elements inside div ele-
ments that have type attribute equal “chapter”

child: :book/
child::title[con-
tains(.,"XPath")]

title children of the book children of the con-
text node*, where the title contains the string
“XPath”

sum(child: :cost)

The sum of all the cost children of the context
node*

(* “Context node” - wherever we are at the moment the XPath is evaluated)

page 2

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 4

ll. Looking at an XML Document

» An XML document is a sequence of characters

* data characters and markup characters

» start-tag and end-tag markup delimits elements
 There is another way to think of an XML document (a tree!)
* Part of the processing (usually an XML parser) builds a tree

 Processes (like XPath and XSLT) work on trees of nodes (made from XML
documents)

<?xml wersion="1.0"7>
<doo>

<Q>XML documents are
<emph>strings of
characters</emph> stored
in files, right?</Q>
<A*Err, XML documents
are <emph>hierarchies

of nodes</emph> in
memory ... aren't ...Parse...
they?
<fdec>

(Text nodes were left out of this diagram to make it simpler to understand)

$Mulberry page 3
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 5

Getting from an XML Document to a Tree
» One root above all elements (called ‘document node' or '/")

* Tree contains element nodes, attribute nodes, text nodes, etc.

* One document element (child of the root)
e “Containment” in XML becomes “children” in the tree

- -

memo I_ memo
memo

Eﬂ : L. to
from . from

| body
body to

para

Iparﬂ para
para para
para L sig

(Text nodes were left out of this diagram to make it simpler to understand)

page 4 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 6

Seven Types of Nodes in the Tree

Root node (the one and only, “/”, aka “Document Node™)
Element nodes (topmost one called “document element”)
Attribute nodes

Text nodes

» For data character content of the elements

* Includes whitespace-only nodes (usually line breaks)
Comment nodes

Processing Instruction nodes

Namespace nodes (in XPath 1.0)

Note: The “document node” is not the same as the “document element”. Rather, the document
element is a child of the document node (root).

%Mulberry page 5
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 7

Nodes Have Name and/or Value Properties

» Some nodes have names (element nodes, attribute nodes)

» Each node has a string value
* Root node has
e aname (/)

» avalue: the concatenation of all text nodes inside the whole document

Element nodes have
* aname (the "gi" or tag name)
* avalue: the concatenation of all text nodes inside the element

 (document element value is a concatenation of all text nodes in the
document)

Attribute nodes have
 aname (the name of the attribute)

* avalue (the value of the attribute)

Text nodes have no names, just their text value

page 6 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 8

Tree Terms: parent, child, sibling

/

<dog> | dog
<bone/> dOg bone
<flea/> bone

</dog> __o flea flea

 / (root) is the parent of dog

* dog is the parent of
* bone
* flea

* bone and flea are children of dog

* bone and flea are siblings (of each other)
* bone is a preceding sibling of flea

» fleais a following sibling of bone

%Mulberry page 7
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 9

Tree Terms: Document Order

/
<dog> |
<bone/> dog
<flea/> bone
</dog> __o flea

dog

bone

flea

* Elements have a defined document order:

1./

2. dog
3. bone
4. flea

o “Depth-first traversal”:

means all the way down each branch before going on to next sibling

page 8

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 10

Tree Terms: ancestors, descendants

<dog> / p
<flea> | do o9
g
<flea/> flea flea
<flea/> flea
</flea> flea
<bone/> bone bonc
</dog>

Element dog has 1 ancestor: root (/)

First flea has 2 ancestors: dog and root (/)

2nd/3rd fleas have 3 ancestors: flea, dog, and root /
dog has 1 flea child and 3 flea descendants

root has 1 dog child and 5 descendants

bone has 2 ancestors: dog and root (/)

First dog element is ancestor of all the other elements and is called the
document element

bone has no children; it is empty (as are two of the fleas)

(document order: root, dog, flea, flea, flea, bone)

%Mulberry page 9
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 11
Making a Tree of Nodes
<example>Hello there<?foo?>world<!--bar-->.</example>
(Contiguous characters are grouped into one text node)
<example> /
Hello there Lexample
<?foo0?>
"Hello there"
world
. "world"
</example> clabapr-->
nmn
slide 12

Optional Exercise, Making a Tree

<?xml version="1.0" encoding="UTF-8"?>
<article
xmins:xlink="http://ww._w3.0rg/1999/xlink"
article-type="book-review'>
<front>
<journal-meta>
<journal-id journal-id-type="nIm-ta">Philos Ethics Humani Med</journal-id>
<journal-title-group>
<journal-title>Philosophy, Ethics, and Humanities in
Medicine</journal-title>
</journal-title-group>
<issn pub-type="epub'>1747-5341</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</journal-meta>
</front>
</article>

page 10 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 13

lHl. What is XPath?

A language for
* navigating to parts of the XML tree
 performing operations over data (including, but not limited to, trees)
» matching conditions in a tree (a subset of XPath is designed for this)
e Used in XSLT, XQuery, Schematron, XSL-FO, for XML databases, etc.
» XPath says how to get there (in your document)
» XQuery, XSLT, Schematron, XPath 3, etc. say what to do when you get
there

(XPath 2.0, 3.0, and 3.1 may also tell you what to do)

slide 14

XPath = The XML Tree-walking Language

» Named because it uses a path notation with slashes
like UNIX directories and URLsS

invoice/customer-data/customer-name
article/body/sec/title
/dog/flea/flea

%Mulberry page 11
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 15

XPath has Three Main Uses
1. Locating portions of XML documents

* addressing (naming) portions of an XML document

* addresses (finds) a named portion of an XML document
(“gimme my footnote!”)... and gets it back

2. Testing/Matching (used in Schematron, XSLT)
» A subset of XPath was designed for this

 Test whether a node in a tree matches a pattern

(Is this node a paragraph inside a footnote with an attribute called
“footnote-type” with value “legal”?)

3. Performing operations over data (including trees)
® numeric operations (counting, adding, rounding)

® string operations (contains, starts-with, substring, tokenizing)

* boolean operations (for conditionals: equality, comparisons between numbers or nodes)

® sorting, and lots more

page 12 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 16

The XPath 1.0 Data Model: Trees Not Text

o XPath does not

* read or understand XML documents (tagged text)
* understand about pointy brackets or entities
» XPath works on trees (a model of an XML document)
» Some application makes an XML document into a tree of nodes

o XPath works with element nodes, attribute nodes,
comment nodes, etc.

An application uses XPath to select part of a tree for processing

<example> /

O
Hello I—cxample §
<noun> iello " §

world } <

</noun> noun %?

. LiMde' ©
</example> o

%Mulberry page 13
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 17

Axes: How XPath Talks About the Tree

 The parts of the tree are named using axes
(for example, ancestor:: or child::)

» An axis is a relationship between
* “Where you are now” and
» Another part of the tree
» “Where you are now” is called the context node

e An axis determines a direction to travel on the tree
 Always starting from a context node

 Always in one direction
» This is one “step” in traversing the tree

slide 18

Syntax for Axes
» An XPath axis is written as
* the axis name followed by
* two colons
* e.0., parent::
» “Forward” axes proceed in document order (like child::)

» “Reverse” axes proceed in reverse document order
(like ancestor::)

page 14 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 19
The 13 XPath Axes
child descendant descendant-or-self
parent ancestor ancestor-or-self
attribute following-sibling following
self preceding-sibling preceding
namespace
slide 20
Let's Learn the Axes
(Text nodes were left out of this diagram to make it simpler to understand)
slide 21

Optional Exercise: Gathering Nodes By an
AXis
 Taking the node “X” as the context node

* Let’s run through the axes, one at a time

%Mulberry page 15
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 22

Five Axes Cover All a Document’s Elements
from Anyplace

The following five axes (taken together) let you cover the entire tree.

« ancestor(s) + descendant(s) + following + preceding + self = all nodes
(except attribute and namespace)

slide 23

The Peculiarities of Attributes
 An attribute node has a parent (the element to which it is attached)
 But the attribute is not
* a“child” of that parent
* or a “descendant” either
* The only way to retrieve an attribute is to use
e attribute:: axis

e short form @

article[attribute: :status="draft"]
article[@status="draft"]

(The child:: axis traverses to elements, text nodes, comments, or processing instructions, but not
to attributes.)

page 16 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 24

XPath Location Paths Walk the Tree

(Deep, reread this after you see it!)

* Location Paths written as a series of “steps”
 Each step talks about nodes in the tree

» A slash (/) between each step

* Paths are composed left to right
(beginning at the context node)

 Each step:

» selects the requested nodes relative to the context node (selected in the
previous step)

* uses tests to determine which nodes to keep

» Provides the context for the next step
child::title[@xml:lang="en"]

%Mulberry page 17
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 25

Each Location Step Has At Least Two Parts
(May Have Three)

1. Axis — Where to go (in relation to the context node)

 expressed as an Axis name + “::” (descendant: :)
* an axis specifier is always present
» sometimes implicit (title same as child::title)
2. Node Test — What kind of node do you want?
» expressed as the name or type of the node
* (title, text()), element()
3. Filter (also known as Predicate)
« an optional qualifier to further refine/restrict the nodes returned
* inside square brackets after the node test ([])
* ([starts-with(.,"The™)], [lastO]))

Location Step = axis:: + nodetest + [predicate/filter]*
child::title[@xml:lang="en"]

slide 26

A Step With Three Parts
child::list[count(descendant::item) > 8]

1. Anaxis (child::)

2. A node test (the name of an element “list”)

3. Zero or more predicates/filters [count(descendant::item) > 8]

Go along the child axis from the context node,

and gather up all the <list> elements,

then keep each <list>;

if and only if it has more than 8 <item> descendants.

page 18 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 27

Absolute Location Path

« Starts at the root

» Begins with a “/”

 /body retrieves all child elements of the root named body
/article/body

/article/body/section/title
/article/front/article-meta/pub-date

slide 28

Relative Location Path
« Starts at the context node
 Has no leading “/”
* body
* Starts wherever we are at the moment

 Retrieves child elements of the context node named body

article/body
body/section/title
article-meta/pub-date
pub-date

%Mulberry page 19
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 29

“/” Separates Location Paths into Steps

Relative Location Path

sec/title

One or more “location steps” separated by “/”
Absolute Location Path

/sec/title

Initial “/” indicates the root node;
followed by a location path

slide 30

Let’'s Evaluate the Location Path slide/title

Two ways to read and use this Location Path:
 As a context or match pattern

* matches any title child of a slide in the document

» As a select expression

starts at the context node

selects all slide children of the context node

then selects all the title children of those slides

returns a node list (union of title elements)

what is selected depends on the context node

slide 31

Let’'s Watch Select Expressions in Action

page 20 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 32

First, Determine the Context Node

Something non-XPath does this:
» Schematron @context attribute
 XSLT @match attribute

- <slideshow>
<title>Introduction to XSLT for Managers-< /title>
< segment>=
<title>Overview< /title >
- <slide>
<title > Administrivia< /title >
< [slide >
- <slide>
<title>Where We Are Going Today< /title>
< [slide >
< [segment:>
< [slideshow =

%Mulberry page 21
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 33

The slide Step in slide/title

slide/title

Select the slide children of context node:

- <slideshow>
<title>Introduction to XSLT for Managers< /title >
- <segment>
<title>>Overview- /title >
- |<slide >
<ftitle>Administrivia< /title >
< [slide >
- |<slide>
<title>Where We Are Going Today</title >
< [slide >
< [segment:>
< [slideshow =

page 22 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 34
The title step in slide/title
child::slide/child::title
For each of those slide nodes, select title children:
- <slideshow >
<ftitle>Introduction to XSLT for Managers</fitle >
- <segment>
<title >Overview < /title >
- <slide>
<ftitle>Administrivia< /title >
< [slide >
- <slide>
<title>Where We Are Going Today</title >
< [slide >
< [segment:>
< [slideshow =
Result is the union
slide 35

A More Complex Location Path (optional)

slide[attribute: :type="overview"]/list[count(descendant: :item) > 8]
« Still has two steps separated by “/” character:

o Step #1 slide[attribute::type="overview"]

» / (aslash)

o Step #2 list[count(descendant::item) > 8]

%Mulberry page 23
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 36

Stepping Through This Example (optional)

slide[attribute: :type="overview"]/
list
[count(descendant::item) > 8]

o Step #1

» From where we are (our context node)

» Go through that node’s children

» Get the slide elements

» Take the ones that have a type attribute with the value “overview”
 Step #2, For each of the selected slide children

» Getall its list children

» Keep the ones that have more than eight item descendants

slide 37

Homework: An Even More Complex Relative
Location Path (optional)

/descendant-or-self::node()/child: :body/descendant-or-self: :node()/child: :sec/
child::p/child::list/child::list-item[3]/child::p

(Explained on the next slide; try it first as a self-test.)

page 24 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 38

Stepping Through This Complex Example
(optional)

/descendant-or-self::node()/child: :body/descendant-or-self: :node()/child: :sec/
child::p/child::list/child::list-item[3]/child::p

Step #0, the root "/", this is an absolute path

Step #1, all the descendants of the root, plus the root

Step #2, all the body children of all these

Step #3, all the descendants of the body element, plus the body

Step #4, all the sec children of these elements. Yes, there are lots of them,
not just the body's sec children but also their sec children

Step #5, all paragraphs (p children) in each sec

Step #6, all list children in each p element

Step #7, the third list-item in each list

Step #8, all the paragraphs (p children) in this list-item

%Mulberry page 25
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 39

XPath Node Tests
Location Step = axis:: + node test + [filter]*
* Test the nodes in the tree

» By type of node (element, comment, etc.)

» By name of node (element type name (gi), attribute name)
* A common node test is “*”

The meaning depends on the axis
child::* means all element children of the context node
attribute::* means all attributes of the context node
“* selects all nodes of the “primary node type” of the axis

slide 40

Node Testing by Name
® npame

* Tests the name of the node

* Returns nodes of that name from the axis specified
child::item Retrieves any child elements named item
parent::list Retrieves a parent element named list
attribute: :type Retrieves any attribute named type
ancestor-or- Retrieves any ancestor elements named section, or
self::section the context node itself if it’s a section element

page 26 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 41

Node Testing by Type
You can use any of these node tests with any axis

node() Test is true for any type of node

text() Any text node

comment() Any comment node
processing-instruction() |Any processing instruction node

element() Any element node [XSLT 2.0+]

attribute() An attribute [XSLT 2.0+]

item() Any item (node or atomic value) [XSLT 2.0+]

Pop Quiz: attribute: :text() gets you which nodes?

$Mulberry page 27
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 42

Node Testing by Explicit Schema Data Type

(XSLT 2.0+)

element() Any element node

element(title) Any element named title (any data type)

element(title, Any element named title whose schema type is the
hardtitle) user-defined type “hardtitle” (or a type derived from
“hardtitle”)

element(*, Any element whose schema type is the user-defined

hardtitle) type “hardtitle” (or a type derived from “hardti-
tle”)

element(*, Any element whose schema type the simple type

xs:date) xs:date

schema- Any element named title or in the substitution group

element(title) headed by title and (loosely) whose schema type is the
same as title’s (or a type derived from “title”)

page 28 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 43

For Reference: More Node Tests (optional)

® processing-instruction($target)

* Test is true for any processing-instruction node with target named tar-
get

e child::processing-instruction(*xml-stylesheet")
retrieves any PI children with target named xml-stylesheet

* $prefix:*
 True for any node of the principal node type of the axis in the name-
space identified with the given prefix

* descendant-or-self::svg:* retrieves any descendant elements in the
svg namespace, or the context node itself if it is one

» For example,
ancestor-or-self::tei:div

Retrieves any ancestor elements named div in the tei namespace, or
the context node itself if it’s such a div

slide 44

Expressions in Location Paths (optional)

A location step can include an expression

//mixed-citation/(name | person-group)/surname

If the expression is not the final step, it must return a sequence of nodes
(or an error is returned)

Here is the same thing in XPath 1.0

//mixed-citation/name/surname | //mixed-citation/person-group/surname

%Mulberry page 29
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 45

Filters (Predicates)

Location Step = axis:: + nodetest + [filter/predicate]*
A location path step

* traverses the tree and

* collects a set/list of nodes

 Each predicate filters that set of nodes

* Filters/Predicates appear within square brackets

slide 46

A Sample Filter

descendant: :slide[@showintoc="yes"]
The XPath expression above retrieves
» Descendant elements of the context node named slide

» Then keeps only those that have
* a showintoc attribute

* with value equal to “yes”
Filters can be read as “if and only if” or “keep only those that”

page 30 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 47

Examples of Filters
child: :emph[@type]
 emph element children with an attribute type
child::emph[@type="italic"]
 emph element children with attribute type whose value is “italic”
slide[descendant: :title[contains(self::node(), “"Where We Are®)]]
* slide children
» That have a descendant title element
 That contains the string “Where We Are”

contains() is a function (two arguments)

slide 48

One Step Can Take Many Filters
» Each successive predicate filters the node set to another node set
» Multiple predicates in a single step are evaluated left to right

» Each predicate filters a node set

 Each filtered node set provides the context for the next predicate (or
next step if this is the last predicate)

Therefore order matters!!
slide [@type] [3]

* (slide children of context node, those with an attribute of type, the third
such slide)

slide [3] [@type]
* (slide children of context node, the third such slide, if and only if that
slide has an attribute of type)

%Mulberry page 31
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 49

Examples of XPath

@security

The “security” attribute on the context
node

title[contains(.," "XPath™)]

sum(cost) The sum of all the cost children of the con-
text node
book/ title children of the book children of the

context node, where the title contains the
string “XPath”

For $a in
distinct-values(/bib/book/
author)

return ($a,
/bib/book[author = $a]/
title

For x in...

Returns a sequence of distinct values of
author elements inside book elements, each
author followed by the book title ele-
ments belonging to that author

page 32

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 50

Reading an XPath

Quiz: Figure out what you will get back

child::flea

ancestor: :flea

//caption[count(*) > 1 or not(p)]
contrib-group/contrib
contrib-group[@content-type="author']/contrib/(name | string-name)/surname
//sec[@type="'summary"]

//sec[title | label]

//sec/title

//xref[@rid = current()/@id]

back/sec[@id and not(ancestor::appendix)] |
sec/subsectl[@id and not(ancestor: :appendix)] |

subsectl/subsect2[@id and not(ancestor::appendix)] |
subsect2/subsect3[@id and not(ancestor::appendix)]

All the rest is which ones, not what

%Mulberry page 33
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 51
XPath Short and Long Syntax
Long syntax:
» Explicit
» Easy to learn
 Can be verbose
Short syntax:
» Some long forms can be abbreviated
» Concise, easy to use (if you know what it means!)
 But there are a few “gotchas”
some things don’t work with short, only with long
slide 52

Heads-up: Long and Short Syntax
» XPath has an abbreviated (short) syntax for some constructions

e child::slide[attribute: :type="overview"]
is the same as
slide[@type="overview"]

* Most XPath in real life uses short syntax when possible
» Some things can only be expressed in long syntax

« Short syntax is fun and easy when you know long syntax
...and confusing (no fun!) when you don’t

So we learn the long syntax first

page 34 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 53
Abbreviations to Make Short Syntax
Full Syntax Abbrevi- Comment
ated Syn-
fax

child:: no axis means the child: : axis
attribute:: 0
/descendant-or- // Note that this is one full step: axis,
self::node()/ node test, and delimiting slashes
self::node() . i.e., the context node
parent::node() .-
[position() = 12] [12] A number (or expression returning a

number) by itself in a predicate is an

equality test against position()

...and that’s it!

slide 54

Short Syntax Simplifies Expressions

child::slideshow/ child::title slideshow/title

parent::node()/ descendant-or- .. //title
self::node()/ child:title

self::node()/ descendant-or-self::node()/ |.//emph/
child::emph/ attrib- Otype[-="italic"]
ute::type[self::node()="1talic"]

%Mulberry page 35
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 55

Optional Exercise: Long and Short Syntax
» Take a look at the XPath 1.0 reference card

 Translate the expressions in the tables from full syntax to abbreviated syn-
tax or from abbreviated to full.

slide 56
From Full to Abbreviated
Translate the expressions from full to abbreviated syntax
Full Syntax Abbreviated Syn-
tax

self::node()/child: :PROLOGUE/child::TITLE
/descendant-or-self::node()/child: :STAGEDIR
child::*/child::LINE

parent::node()/child: :processing-
instruction(*'foo™)

attribute: :bhar

page 36 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 57

From Abbreviated to Full

Translate the expressions from abbreviated to full

Abbreviated Syntax Full Syntax

PERSONA
./PGROUP
//FN/P

/
SCENE/LINE
../TITLE

(Answers are in Appendix A)

slide 58

Warning: In a Location Path,
Axis and Node Test Are Required
» Watch out! Every step has an axis and a node test.

 Abbreviations (short syntax) may make things invisible — but they’re still
there

 (Except filters. When they’re not there, they’re not there.)

This is good. It means when a location path is mysterious, all you have to do
Is expand it to long syntax and figure out what its pieces are.

%Mulberry page 37
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 59

V. Match Patterns are A Subset of XPath

Remember there are two ways to read and use this Location Path:
slide/head

 For a select expression,what is selected depends on the context node
* starts at the context node

* selects all its slide children
* then selects all the title children of those slides
* returns a node list (union of title elements)
* As a context or match pattern
* matches any title child of a slide in the document

* used in Schematron @context attribute

® used in XSLT @match attribute

page 38 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 60

The XPath of Match Patterns

» Are asubset of XPath expressions returning node sets
» Have special “match pattern” rules:
e Only child:: and attribute: : axes are allowed
 / and // step operations are allowed
* Filters are allowed

e XSLT 1.0 disallows variable references; XSLT 2.0, 3.0+ allow variables

A good match pattern Not okay
sec following-sibling::*
caption/title title/parent: :caption
sec//p sec/descendant::p
caption[title] caption/title/..

p[1] p[position() = $pos]
sec[@sec-type="chapter™]/title 1+ 2

%Mulberry page 39
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 61

Examples of Using Match Patterns
Ancestry

<xsl:template match="title">

VS

<xsl:template match="sec/title">

VS

<xsl:template match="sec/sec/title">

Associated Values

<xsl:template match="ext-link[@ext-link-type="uri*]">
VS

<xsl:template match="ext-link[@ext-link-type="email*]"">
Arbitrary Criteria

<xsl:template match="list-item">

VS

<xsl:template match="list-item[not(following-sibling::list-item)]">

slide 62

So What is the Problem?

» Match patterns and select expressions have the same syntax
* So they can look just alike

* Which can be confusing

page 40 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 63

A Plain Old Location Path

<xsl:apply-templates select="sec/title"/>

» As an XSLT select expression
* Selects a set of nodes for processing
 Evaluated relative to the current node

* Returns a list of nodes (all the title children of the section (sec) chil-
dren of the context node, in document order)

slide 64

Same Location Path as a Pattern

In Schematron, we have:

<rule context="sec/title">
Matches a node if and only if:
* Node isatitle

* Node has sec parent

(Optional Exercise: Let’s all go see Appendix B for more about location
paths versus patterns.)

%Mulberry page 41
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 65

V. XPath is an “Expression Language
(advanced)

When you write XPath, what you write is an expression

A location path is one kind of expression
/article/front/article-meta/pub-date

e (7 * 6) is also an expression

» An expression is evaluated to produce an object
A location path returns a sequence (list) of nodes
o (7 * 6) returns 42

e "XPath"™ = "difficult” returns false

e distinct-values((4,5,6,7,6,5,4)) returns a sequence (4,5,6,7)

distinct-values() is a function “(4,5,6,7,6,5,4)” is a sequence

page 42

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 66

XPath Defines Functions and Operators (for
Expressions)
 Syntax for a function is:
* the name of the function followed by
* parentheses, which contain
* any arguments the function needs (maybe none!)
» For example
e count(item) returns a count of the number of item children
e contains("'Mulberry", "M™) returns true (boolean)

e not(title) returns true if the context node has no title child and
false if it has one (boolean)

e concat("Mu", " lberry") returns “Mulberry” (a string)
* starts-with("Mulberry®, "M") returns true (boolean)

* distinct-values($someSequence) returns a list of the non-duplicate
items in the given sequence

last() returns a number equal to the context size

%Mulberry page 43
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 67

More Examples of Functions (optional)
e 1tem[position() = 3]

» Get item element children whose position is 3 (i.e. the third one)
e 1tem[last()]

» Get item element children whose position is equal to the number of p
elements on the axis (i.e. the last one)

e slide[count(list) > 1]/head

» Get slide element children that have more than one list element child;
then get the list’s head element children

e child::*[not(self::contrib)]
» Get any element children that are not themselves contrib elements
o //title[*]

 Just a filter, not a function. Get all the title elements that have chil-
dren

* //normalize-space(title[not(*)])

 Get rid of extra whitespace on all the title elements that DO NOT have
any children

e attribute::*[not(local-name()="type")]

 Get attributes that aren’t named “type”

page 44 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 68

For Reference: Some Useful Functions
(optional)

position() Returns position of node in current node list
(Not the position of the node in the document)

last() Returns the size (count) of the current node list

count(node-set) [Counts the nodes in the argument node set

name(node-set?) |Returns the namespace-qualified name (name()) or lo-
and local- cal name (local-name()) of a node (the first node in
name(node-set?) |the argument node set)

not(object) Converts the argument to a Boolean (when necessary)
and inverts it

slide 69

Optional Exercise: Looking at Some XPath
Functions
We might look at Appendix C

slide 70

All Functions, Expressions, Operators Work
on Typed Data

 Best if types are explicit (from schema or casting)

o XSLT 1.0 will “coerce” type if there is no typing specified

e XSLT 2.0+ throw an error on type mis-match

* You can test on types as well as on elements and attributes

%Mulberry page 45
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 71
Most Common Types for Expressions
 Nodes of zero or more nodes
(node sets in XSLT 1.0, sequences of nodes in XSLT 2.0+)
« Numbers (1, 2, 3, 30000000, NaN)
o Strings (“Debbie”, “Tommie”, “1”, “30000000”)
» Booleans (true or false)
» Sequences of “items”
(XSLT 2.0 and 3.0+ can also use all Schema types, derived types, and atomic values)
slide 72

XPath 1.0 Assumes Automatic Casting
Between Data Types
(There’s magic in those expressions!)

» Some functions/operations require an argument or operand of a particular
type

« If the given arguments are not what the function needs
...will try to turn an object into what it needs

concat(“http://", child::url)

 concat() requires strings as arguments

» The first argument is a string; but the second is a node set
e child::url will be turned into a string

» A node set is converted into a string by taking the string value of the
first node in the set (in document order)

» The concatenation could produce “http://ww.mulberrytech.com”

* |If there is no node, or an empty one, you’d get “http://”

page 46 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 73

XPath 1.0 Rules for Converting Objects to
Booleans

» There are rules for converting between objects (Appendix C)
 Here are the rules for converting an object to a boolean

* First column is object you have; second column is how the conversion
works

Boolean false if false, true if true

Number false if zero, true if not

String false if empty (= "), true if not
(or true if the string’s length >= 1)

Node set false if empty (no nodes in set), true if not

slide 74

XPath 2.0 and XPath 3.0 Types are Explicit
New functions to deal with types
* Create types explicitly

 Cast between types

» Determine (or fix) types before you try to use them
 Catch type errors with conditional testing

Schema-aware processors (SA) can read the types from the schema

%Mulberry page a7
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 75

Type Functions (optional)

cast as

Creates a new value of a specific type based on the
existing value
input-expression cast as target-type

5 cast as integer

castable as

Tests if a given value can be cast into a given tar-
get type without error. Returns boolean.
expression castable as target-type

$size castable as xs:anyURI

xs:date("'2017-10-31")

Constructor functions. One for every one of the
atomic XSD types. Requires xs: namespace. This
one works the same as

("'2017-10-31" cast as xs:date)

instance of

Returns boolean if the value of the first operand
matches the type given in the second operand

3 instance of xs:integer

would return “ true ”

treat as

At run time, here is the type you should have;
postpone all checking till then, and fail then if the
type is wrong. The idea is to make static checking
work until dynamic checking cuts in at runtime.
May be useful for elements that can have two very
different potential models (an integer or the code
words "not applicable™; quantity-on-hand as a
number or as the word *“out-of-stock”, any Ad-
dress or a more restricted “United States Address”,
etc.)

$myaddress treat as element(*, USAddress)

page 48

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 76

When an XPath Expression is Evaluated
(by an XSLT processor, for example)

The processor knows certain things to start:

» Context node (“which node am | processing now?”)
* in XSLT, typically the node that a template matches
* in Schematron, node named by @context attribute on <rule>

» Context size (“how many nodes am | processing with this one?”)
typically the number of siblings

» Context position (“of the nodes | am processing with this one, which one
is this?”)

» Equals size of current node list (list of nodes queued up with this one)
* First position is 1
 Other deep knowledge:
* Values assigned to variables in scope (in XSLT)
« All available functions

* Namespaces in XSLT stylesheet in scope (default namespace not included)

%Mulberry page 49
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 77

Comparison Operators in XPath and XSLT

» XPath 1.0 defines only general comparison operators.

» General comparison operators compare sequences of values. In XPath

1.0, only node sequences (node sets). XPath 2.0+ have sequence datatype
for sequences, atomic values for anything else.

» Value Comparison operators compare individual values, not sequences of

values.

» Node Comparison operators only work of nodes and concern node equal-

ity and relationships.

o XPath 2.0+ use all 3 types (Appendix D)

Operator Meaning |General Compari-| Value Com- | Node Com-
son* parison parisons
(for a sequence of | (for single |XPath/XSLT
values) values) 2.0 and
All XPath/XSLT | XPath/XSLT above
Versions 2.0 and above
equal = eq
not equal 1= ne
less than < (as<) It
less than or equal to < =(as <=) le
greater than > (as >) gt
greater than or equal to [>= (as >=) ge
equality of nodes is
left arg follows right >>
arg in document order
left arg precedes <<
right arg in document
order

page 50

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 78

VI. Tips, Traps, and Gotchas

(as time permits)

slide 79

Why You Want to be in XPath 2.0, 3.0, 3.1

* You can write your own functions! (priceless)

» Regular Expressions!

 Lots more functions and operators

 For data: real data types, sequences, XSD-aware

» XPath 3.0: Higher order functions! (a real language)
o XPath 3.1: maps and arrays for JSON

slide 80

Oxygen XPath Tools
 Are great tools!
* Let’s look at them
» XPath window choosing version
» Update XPath on cursor move
» XPath/XQuery Builder
Other editors and database Uls have similar tools

%Mulberry page 51
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 81
Quoted strings
What’s the difference between A and B?
* A. <xsl:value-of select="title">
* B. <xsl:value-of select=""title"">
* For A
* think element node
e think child::
* For B:
e think string
slide 82

In Attribute Values, “<” vs. “<”
(This is XML well-formedness, NOT an XPath problem!)

e “<” s an XPath operator
» ...character not allowed in an attribute value! (XML well-formedness)

o <xsl:if test="(@position < 10">...</xsl:i1f>
...isn't well-formed!

» In XML attribute values, express “<” as “&lIt;”
o <xsl:if test="(@position &It; 10">...</xsl:if>
* XML parser reports “@position < 10” to processor...

...we're fine!

page 52 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 83

Don't Neglect the Obvious

sometimes the syntax can throw you
 Spaces around operands

 aren’t just a good idea
* but the rule

e “big-dogs ” is a name

e “Dbig - dogs ” is arithmetic on elements

%Mulberry
Technologies, Inc.

page 53

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 84

Test for Content Using normal1ze-space()
 Function normalize-space() trims extra whitespace from a string of text

» removes leading whitespace
» removes trailing whitespace
* reduces interior runs of whitespace characters to a single space

« If there’s nothing but whitespace in the string,
then nothing (an empty string: ") remains after this trimming

» So normalize-space(self::node()) tests true
only when the string tested has content besides whitespace

<rule context="surname'>
<assert test="normalize-space(.)">Surname has no content</assert>

</rule>

Very Cool: This assertion will fail for all of these:
e <surname/>

e <surname> </surname>

e <surname>
</surname>

(In other words, if you clean up all the whitespace and there is nothing left,
the node is empty!)

page 54 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 85

Normalize Space Warning
e Use normalize-space()
« for testing for empty elements
« for any testing you want!
* to trim space from text-only nodes
e Do NOT use normalize-space()
* to trim space from mixed content nodes such as <p> or <title>

* normalize-space() works on strings and all interior markup will vanish
<title>Why <italic>E. coli<italic> are Harmful</title>
becomes

<title>Why E. coli are Harmful</title>

%Mulberry page 55
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 86

The Axis descendant-or-self:: is a Full Step

 You want to find the very last list item in the entire document, ignoring all
other list item nodes.

e This XPath won’t do that
//list-item[last()]

Why not? Let’s look at what that XPath means:

* The long form of that XPath is:
/descendant-or-self::node()/child::list-item[position()=last()]

» What this means: There are two steps, and the predicate only filters the
second step

« first all the descendant nodes are found
« then, for each one, the last child list-item is found

How do we solve it?
(//list-item)[last()]
(group the nodes with parentheses and apply the predicate to the whole

group)

page 56 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 87

Union Operator (“|”) vs. Boolean Operator
(“ Or”)
Do these do the same thing? (Why or why not?)

o <xsl:if test="title | body">...</xsl:if>
This is a union operator

e <xsl:if test="title or body">...</xsl:1f>
This is a boolean

How about these?

e <xsl:if test="title="Preface" or body">..._.</xsl:if>
An xsl :if test on a string with any content is always true

e <xsl:if test="title="Preface” | body">...</xsl:if>
(Union of a string and a nodeset is always an error)

slide 88

Say It Ain’'t So!
1= operator can lead to non-intuitive results: not() is usually safer.
* select="slide[@type!="intro"]"

 Selects slide children (of the current node) that have a @type attribute,
where the value is NOT “intro”.

 Gotta have that attribute!
* If @type returns empty node set, it tests true as not equal to “intro”
e slide[not(@type="intro®)]

 Selects slide children (of the current node) that do not have a @type
attribute whose value is “intro”.

%Mulberry page 57
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 89

Sequences Need their Boundaries! (optional)

Commas and parentheses make sequences,
and sequences are a single thing

For example:

» The function min() returns the minimum value in a number or sequence
e min((8, 5, 23)) returns 5

e min(6) returns 6 (six is just a number)

e Butmin(8, 5, 23) would return an error
min() needs a sequence, and we're giving it three numbers and some com-
mas

slide 90
Mulberry Quick Refs
Take one of each and take a look!

slide 91
Advanced Tips and Gotchas (optional)

slide 92

Select All Nodes Except
e In XPath 1.0: *[not(self::title)]

 In XPath 2.0 and 3.0:
(* except title)

How to select an empty node set:
o /..0r

. @text()

page 58 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 93

Some XPath 2.0 and 3.0+ Expressions

that behave like document-order, no-duplicate node
sets

» Expressions that use the path operator “ /7 ”
» Expressions that reference an axis

» Expressions using the operators:
* union (])

e Intersect

* except

%Mulberry page 59
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 94
Be Careful for Context
For Expressions and Location Paths are Different!
Location Paths For ... in ... returnexpres-

sions

Work with nodes Work on any sequence
Duplicates eliminated Duplicates allowed
Sorts results into document order No sort, input order retained

Each step is evaluated in turn, reset- |Does not set context node
ting context node

sum(for $n in child::name return concat($n/fname, " ", $n/surname))

» Warning: the context for the return is the same as the context for the
whole for

 So this will not work as intended:
for 3n in child::name return concat(fname, " ", surname)
 Fix this with

for $n in child::name return concat($n/fname, " ", $n/surname)

page 60 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 95

Surprise! Operators Can Force Document
Order

* You've sorted some employee records into a sequence
“$sorted-employees”

* Now that you have them, you want just the names
» The location path:

$sorted-employees/name

 would return the names in document order not sorted
* because it contains a “/”

® (with thanks to Michael Kay for this example)

* You probably want

for $e in $sorted-employees return $e/name

slide 96

How to Use Types in a Type-free World

(DTD-valid or well-formed, for example)

You do not want something dealt with as “untyped-atomic”,
but you don’t have a schema.

Either:
 Cast a few types

e cast starts with an existing value and creates
a new value of the specific type

* Syntax
source-type cast as target-type

» Or make types using constructor functions
xs:date(*'2005-08-30")

%Mulberry page 61
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

slide 97

VII. Colophon

« Slides and handouts created from single XML source
« Slides projected from HTML generated from XML using XSLT
* Print copy created from the same XML source
* XSLT transform generates XHTML
» Antenna House Formatter makes PDF from:
e XHTML
o CSS3 (slightly extended)
 Graphics sizing table

page 62 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix A
Answers to Short/Full Syntax Exercise

Full Syntax Abbreviated Syntax
self::node()/child: :PROLOGUE/ ./PROLOGUE/TITLE
child::TITLE
/descendant-or-self::node()/ //STAGEDIR
child: :STAGEDIR
child::*/child::LINE */LINE
parent::node()/child: :processing- ../processing-
instruction(*'foo') instruction(*'foo')
attribute::bar @bar
Abbreviated Syntax Full Syntax
PERSONA child: :PERSONA
./PGROUP self::node()/child: :PGROUP
//FN/P /descendant-or-self::node()/child: :FM/child: :P
/ /

SCENE/LINE child::SCENE/child::LINE
. /TITLE parent::node()/child::TITLE

$Mulberry page A-1
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

page A-2

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix B

Pattern Matching in XSLT and Schematron

Subset of XPath Used for Matching/Testing

A subset of XPath expressions are used in XSLT, Schematron, and elsewhere
for matching. This is an application of XPath that is defined in the XSLT/
Schematron specifications. When location paths are used as patterns, the
processor has already selected a node and the question is whether the node
matches the pattern. Basically matching works as follows:

* You have a node (an XSLT or Schematron engine or similar got it for you)
* You have an XPath expression called a “pattern”

* possibly as an XSLT <xsl: template match="pattern"

* possibly as a Schematron <rule context="pattern"
» The question is: “does the node you have match that pattern?”

* The answer is a boolean, true or false

Some Pattern Matching Examples

<xsl:template match="para"/>

Matches every element named para
<xsl:template match="*"/>

Matches any element
<xsl:template match="SECTION/TITLE"/>

Matches any element named TITLE, but only when the title is a child
of SECTION element

xsl:template match="employee[@category="critical"]"/>

Matches any element named employee that has an attribute named
“category” that has a value of “critical”

%Mulberry page B-1
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Two Ways to Read the Same Location Path

The same XPath syntax can have a different meaning and reading depending
on where it is used. When an XPath location path is used as a “match pat-
tern” it is read and evaluated very differently from the same location path
used as an expression, for example as the value of a select attribute. As an
example, take the XPath expression

slide/title
As a match pattern, it matches any title element that is the child of a slide.

Patterns work right to left, testing one node at a time. (Are you a title? Is
your parent a slide?) The expression returns a Boolean: true or false.

As a location path, the expression is evaluated in relationship to the context
node (it is the short syntax form of child: :slide/child::title). It returns
not a Boolean but a node set, “the title children of the slide children of the
context node”. Location paths are evaluated left to right, so, when evaluated
relative to the segment context node, this path selects the title children of
the slide children of segment. It goes like this:

 Find the segment (the context node)
» Get the slide children of that segment,
» Then get the title children of those slides

* Return a set of nodes (e.g., the selected titles)

Cheat Sheet: Location Paths in select Attributes

The table below provides samples of location path syntax when applied in an
XPath select expression. The table after this one illustrates many of these
same expressions as they are used in an XSLT “match” pattern.

Each expression is evaluated relative to an already-selected context node and
returns a node set.

Expression Returns

name name children of the context node
/ Root node
The context node itself (equivalent to self::node())

The parent of context node (equivalent to parent: :node())

page B-2 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Expression Returns

./name name children of the context node (equivalent to name and to
child: zname)

.//name name descendants of the context node

//name name descendants of the root node

namel | Union of namel and name2 children of context node

name2

../name name children of parent of context node (i.e., name sibling el-
ements, and context node if context node is name)

. ./@name name attribute of parent of context node

* All element children of context node

@* All attributes of context node

*/name All name grandchildren (i.e., name children of element chil-
dren) of the context node

namel/name2 |All name2 children of namel children of the context node

namel//name2 |All name2 descendants of namel children of the context node.
Includes all name2 children of namel children of the context
node

//name[1] All name descendants of the root, that are the first name child

of their parents. Different from /descendant: :name[1] (the

first name descendant of the root)

Location Paths in match Attributes

A match pattern specifies a set of conditions on a node. “A node matches a
pattern if the node is a member of the result of evaluating the pattern as an
expression with respect to some possible context”. The idea is that some
process (the XSLT processor) has already selected a node. Matches act as
tests on that node.

These expressions return a boolean true or false, either the node you have
matches the pattern or it does not.

%Mulberry
Technologies, Inc.

page B-3

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Pattern Matches
name Any name element
/ The root node
* Any element node
@* Any attribute node
namel/name2 Any name2 element with namel parent element
namel//name2 |Any name2 element with namel ancestor element

namel | name2

Any namel element or name2 element

text() Any text node

node() Any node that is a child of another node (i.e., because of
implicit child: : axis specifier, not the root or an attribute
node)

id('xx" The element with the unique ID “xx”

name[1] Any name element that is the first name child of its parent

@name Any name attribute

*[position()=1]

Any element that is the first child of its parent

Match Patterns are a Subset of XPath Expressions

Patterns have been designed as a subset of XPath expressions (more particu-
larly, of XPath expressions that return node sets), and they have a few re-
strictions that do not apply to location paths in general.

Patterns may only look “down” the tree, so they may use /, //, child::, or
attribute:: axes. By the same reasoning therefore, they may not contain:

» Axis names other than child:: and attribute:: (e.g., preceding-
sibling:: not allowed)

e . (self::node())

* .. (parent::node())

 Variable or parameter references

But a pattern may include

page B-4

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

| union operator (e.g., match="name | url")

/ operator (e.g., match="slide/title")

// operator (e.g., match="//title")
Predicates (as long as they contain no variable references)

Patterns may also use the id() or key() functions (though again, without
variable references).

%Mulberry page B-5
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

page B-6

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix C

A Few XPath Functions

Number Functions

XPath deals with numbers (Like 1, 2 and 8) and converts things like strings
into numbers. XPath numbering includes:

* Positive and negative numbers
Not-a-Number (NaN)

Positive zero

Negative zero

Positive infinity

* Negative infinity

The function number(expr), when asked to convert:
1. Number: produces the number

2. String: if parses as number, convert, otherwise NaN
"Debbie" versus "42"

3. Boolean: true=1, false=0

4. Node-set: convert to string, then evaluate

number (expr) Examples

Expression (convert to a number) Returns Rule
number (42) 42 #1 Number
number(l > 2) 0 #3 Boolean
number ("XPath') NaN #2 String
number ('42") 42 #2 String

Numeric operations include:
 Addition, subtraction, division, rounding, etc.
* 5+ 2returns 7

%Mulberry page C-1
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

* round(13 div 3) returns 4

» Warning: division operator is div, not /

 Use mod for a remainder, e.g.,

* 5 mod 2returns 1

* 6 mod 2 returns 0

Numeric Expressions

+ Add arguments

- Subtract arguments

* Multiply arguments

div IEEE 754 floating point division

mod Return remainder from integer division operation

ceiling(expr)

Return smallest (closest to negative infinity) integer not less
than expr

floor(expr) |Return largest (closest to positive infinity) integer not
greater than expr
round(expr) [Return integer closest to expr. If two such numbers, return
number closer to positive infinity.
sum() Sum values of nodes in node-set
Numeric Function Examples
Expression Returns
1+1
1-1
2 * 2
9 div 2 4.5
9 mod 2
floor(4.5) 4
ceiling(4.5)

page C-2

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Expression Returns
round(4.5) 5
floor(-4.5) -5
ceiling(-4.5) -4
round(-5.5) -5
round(5.5) 6

String Functions (type xs:string)

String functions are probably the most commonly used in XPath for docu-
ments. You can compare strings, concatenate strings, make upper case into
lower (or reverse), and such like. Strings are just sequences of characters
(UCS [Universal Character Set] characters, using the same character set that
the XML Recommendation uses.)

In XML, pretty much everything is a string, but you can use the string()
function to convert other objects to strings. XPath 1.0 will coerce things into
strings if a string function is used.

Warning for programmers: Substring expressions count first character as 1
(one), not O (zero)!

When an object is converted into a string:

 Sequence of nodes: return value of first node, or empty string if empty
node-set

* Number: return string in form of number (*42)
* NaN returns "NaN"

Positive zero returns 0"

Negative zero returns 0"

Positive infinity returns "infinity"

Negative infinity returns "infinity"

» Boolean: return "false" if false, return "true" if true

All of the XPath 1.0 String Functions

concat($string...) |Return concatenation of arguments

%Mulberry page C-3
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

$number, $number?)

contains($stringl, Return true if first argument string contains second

$string2) argument string, otherwise false

normalize- Return argument string after stripping leading and

space($string) trailing white space and reducing multiple white-
space characters to single space. Works only on
strings!

starts- Return true if first argument string starts with sec-

with($stringl, ond argument string, otherwise false

$string2)

string- Return number of characters in the string. Argu-

length($string?) ment defaults to string value of context node.

substring($string, Return substring of first argument starting at sec-

ond argument with length specified by third argu-
ment

$string2, $string3)

substring- Return substring of first argument string following
after($stringl, first occurrence of second argument string in first
$string?2) argument string, otherwise return empty string
substring- Return substring of first argument string preceding
before($stringl, first occurrence of second argument string in first
$string2) argument string, otherwise return empty string
translate($stringl, |[Return first argument string with occurrences of

second argument string replaced by corresponding
characters from third argument string

String Examples for the Functions Just Described

Expression Returns
concat(*""Four ", "score ", "and seven™) "Four score and
seven"
contains('Four score and seven", 'core") True
contains('Four score and seven", "four') False
normalize-space(" foo
 bar ') "foo bar"
starts-with(""foo", "f") True

page C-4

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Expression Returns
starts-with("'bar”, "f") False
string-length("'Four score and seven™) 20
substring("Four score and seven', 4, 7) "r score"
substring-after(*"'Four score and seven", " and seven"
"core™)
substring-after(*"'Four score and seven", "

"four')

substring-before("'Four score and seven", "Four s"

"core™)

substring-before("'Four score and seven", "

"four')

translate("'bar”, "abc™, "ABC") "BAr"

translate("EN-us", "ABCDEF...YZ", "abc- "en-us"

def...yz")

upper-case(''iso sts') ISO STS

matches("ldes of March™, "ldes | April™) true

tokenize("March 15, 44BCE",*([1 | ,)*+") ("March®, "15°,
"44BCE")

replace("March 15, 44BCE","BC[E]?" , " before |"*March 15, 44 be-

the Common Era®) fore the Common
Era®

Selected XPath 2.0 and 3.0 String Functions

upper-case($string)

Translates each character to upper-
case (or returns it unchanged if there
IS no equivalent)

lower-case($string)

Translates each character to lower-
case (or returns it unchanged if there
IS no equivalent)

%Mulberry
Technologies, Inc.

page C-5

XPath: The Secret to Success with XSLT, XQuery, and Schematron

compare($stringl,$string2,$colla-
tion?)

Returns which string (of two strings
given) appears first in a given colla-
tion (or the processor's default colla-
tion)

ends-with($stringl,$string2)

Like starts-with() (still in XPath
2.0) except inspecting the end of a
string

string-join($sequence,$separator)

Concatenates all the strings given in
a sequence, using an optional sepa-
rator between adjacent strings

String Expressions Using Regular Expressions

matches($string, $regex,$flags?)

Returns boolean to indicate if string
matches regular expression; matches
if any substring matches (unless an
anchor ~ or $ is used)

replace($string,$regex, $replace-
ment,$flags?)

Constructs an output string by re-
placing parts of the input string that
match regex (while copying non-
matching substrings); replacement
string can reference matched sub-
strings

tokenize($string,$regex, $flags?)

Splits a string into a sequence of
substrings (tokens) as delimited by
separators that match the regex

String Examples for the Functions Just Described

Expression Returns
upper-case('iso sts") 1SO STS
lower-case(*"'1SO STS™) 1So sts
compare(“abc", "abc)" 0
compare(“abc®, “def") -1
ends-with("Mulberry", "berry') true

page C-6

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Expression

Returns

string-join((*John®, "Paul®, "George-,
"Ringo®), "I"

John!Paul 'George!Ringo

matches(*ldes of March", "ldes | April™)

true

replace("March 15, 44BCE","BC[E]?" , " be-
fore the Common Era®)

"March 15, 44 before
the Common Era*®

tokenize("March 15, 44BCE","([1| .)+")

("March®, "15°7,
"44BCE")

Boolean Functions

» Boolean objects can have two values
* true
* false

» Operators include
* and

* or

comparison operators (e.g., <, >=)

equality operators (=, 1=)

 Function boolean(expr)converts the required argument to a boolean:

* Numober: true iff not positive zero, negative zero or NaN (Not a Num-

ber)
* Node-list: true iff non-empty

« String: true iff length is non-zero

Boolean Function Examples

Expression Returns
boolean(1) True
boolean(1 + "XSL™) False
boolean(""'XSL™) True
$Mumeny page C-7
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Expression Returns

boolean(’"")

False

Boolean Functions

not(expr) Returns true if argument false, and false otherwise

true() Returns true

false() Returns false

lang(string)|Returns true if string matches language of current (Case in-
sensitive!)

Sequence of Nodes (Node Set) Functions

« Location paths can be used as expressions

 Result is node set selected by path

* “node-set|node-set ” returns union of node-sets

* “node-set[expr]” filters node-set

Node Set Functions

count(node-set)

Returns number of nodes in node-set

id(object) Returns node-set containing element in same docu-
ment with ID equal to any token in string value of ob-
ject

last() Returns number equal to context size

local-name(node-
set?)

Returns local part of name of first node in node-set

name(node-set?)

Returns combined prefix, colon, and local part of first
node in node-set

namespace-
uri(node-set?)

Returns namespace of name of first node in node-set

position() Returns number equal to context position. First posi-
tion is 1, last equal to last()
page C-8 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

XPath 2.0 and 3.0 Functions for Sequences
There are Bunches of Functions for Sequences

* Basic list manipulation

* insert-before($sequence,$position,$insertion) and remove()

reverse($sequence)

index-of ($sequence, $item,$col lation?) returns position of $item in
$sequence (starting at 1)

« acollation may be used to affect string comparison

distinct-values($sequence) returns the distinct values in the sequence
(de-duplicates values)

subsequence($sequence, $start,$length?) — like substring($se-
quence,$start,$length?) for sequences

* Test cardinality in sequences

* deep-equal ($sequencel,$sequence2) (are these sequences pair-wise
really, really equal)

» Perform math on items in a sequence
e count($sequence)
* average($sequence)
* max($sequence)
* min($sequence)
* sum($sequence)

As well as sequence generation functions dealing with 1Ds and IDREFs,
document availability testing, and document collections

Numerous Functions for Durations, Date and Time
 Addition and subtraction of dates and durations

» Multiplication and division on a few types

» Timezone adjustments

%Mulberry page C-9
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

o Comparisons (less-than, greater-than, equal) for: date, month, time, time-
Duration, YearMonth, MonthDay, etc.

XPath 2.0 and 3.0+ Quantified Expressions
Quantified expressions use the operators some and every.

» They indicate whether an expression satisfies these conditions?
 Both return a boolean; it satisfies or it does not

 some: test if at least one item in expression satisfies the condition

some $variable in expression satisfies expression

* every: tests if all values in expression satisfy the condition
every $variable in expression satisfies expression

As an example:

some $x in /students/student/name satisfies $x = "Steve"

(With thanks to Evan Lenz for the example)

XPath 2.0 and 3.0+ have Conditional Expressions

if ... then ... else...

» Evaluate an expression

* If true, evaluate then branch
* If false, evaluate else branch

* Then return the result of the evaluation
* Syntax

if (test-expression)
then expression
else expression

» Example

it ($part/@discounted)
then $part/wholesale
else $part/retail

page C-10 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix D

XPath Operations

Comparison Operators in XPath and XSLT

» XPath 1.0 defines only General Comparison operators.

» General Comparison operators compare sequences of values. (XPath 1.0
has only node sequences/nodesets; XPath 2.0 and 3.0 have a sequence da-

tatype for sequences of nodes, atomic values, anything.)

» Value Comparison operators compare individual values (not a sequence of
values, only a single-item sequence)

* Node Comparison operators work only on nodes and concern node equal-
ity and relationship between the nodes in the tree.

e XPath 2.0 and 3.0 have all three comparison types.

right arg in docu-
ment order

Operator Mean- | General Compar-| Value Compari- | Node Compari-
ing ison* (for sequen-| son (for single sons
ces of values) values) XPath 2.0 and 3.0
All XPath versions XPath 2.0 and 3.0
equal = eq
not equal I= ne
less than < (as <) It
less than or equal |<= (as <=) le
to
greater than > gt
greater than or >= ge
equal to
equality in nodes IS
left arg follows >>

%Mulberry
Technologies, Inc.

page D-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Operator Mean- | General Compar-| Value Compari- | Node Compari-
ing ison* (for sequen-| son (for single sons
ces of values) values) XPath 2.0 and 3.0
All XPath versions XPath 2.0 and 3.0
left arg before <<
right arg in docu-
ment order

* If you have old XSLT 1.0 programs, they may run unchanged in XSLT 2.0
and 3.0. If there are type errors, in XSLT 2.0 and above, the “XSLT 1.0 com-
patibility switch” can make General Comparisons work almost exactly as
they do in XSLT 1.0. Without the compatibility switch, there are some dif-

ferences in when and how values of one type are converted to values of an-
other type for comparison.

The next few pages explain all these operators in more detail.

Several Types of Operators Over Items

 Arithmetic operators

 Boolean operators

» Node comparison operators

» Comparison operators, which may be considered as two types:
 Value comparisons

» General comparisons

Arithmetic Operators

Arithmetic operators are just what you’d expect from elementary math class.

They handle the simple operations like addition and subtraction. Arithmetic
operators are used on:

* numbers (xs: integer, xs:decimal, etc.)

» on dates and durations too.

Operator Operation
+ Addition
- Subtraction

page D-2 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

* Multiplication
div Division

idiv Integer Division
mod Modulo

Boolean Operators

There are two boolean operators: “ and ” and “ or ”, which compare expres-
sions and return boolean values of “ true ” or “ false ”. Conterintuitively,
there is no “ not ” operator; the not function (forgive the pun) is provided as
a function, not() rather than as an operator.

A series of booleans can be strung together:
(xoryor zorwor jordorQq)

 Parenthesis may be used as needed.

» The and operator is of higher priority than the or operator,
so (x and y or a and b) would resolve to
((xand y) or (a and b))

Operator|Operation

and Returns “ true ” if the two expressions it connects are both true

or Returns “ true ” if either of the two expressions it connects is
true

not() Not an operator. The not() function returns “ true ” if the argu-
ment is false

Node Comparison Operators

Since nodes now come in ordered list instead of sets, it is possible to com-
pare any two nodes, and there are node comparison operators to make that
possible. These operators can be used to compare two nodes:

* by identity, or
* by document order

The general syntax is as follows, with the operator used between two node
operands:

%Mulberry page D-3
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

leftoperand operator rightoperand

Operator|Operation

is True if operands have the same identity, otherwise false

<< True if the left operand precedes the right (in document order),
otherwise false

>> True if the left operand follows the right (in document order),
otherwise false

Operators for Combining Sets of Nodes
 Uses sequences to simulate node sets
* Results are returned in document order

 Given two sequences of nodes:

union (*“|’)[Include a node in the result if it is present in either sequence

intersect |Include a node in the result if it is present in both sequences
(all items in common)

except Include a node in the result if it is present in the first sequence
but not the second (difference between)

except — The except operator can make code much easier to read. For ex-
ample the convoluted XPath 1.0 expression:

child: :*[not(self::p)]
Can be done easily in XPath 2.0 and 3.0+ as:
(child::* except child::p)

intersect — returns pb elements preceding the context inside the same
(closest) div:

(preceding::pb intersect ancestor::div[1]//pb)

 Given the sequence $nodes = (para, list, table, figure)

e Short for (child::para, child::list, child::table, child::fig-
ure)

» All para children, then all list children, then all table children, then
all figures...

page D-4 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

e ...inthat order
« All these will sort this sequence back into document order!
® $nodes | $nodes
* $nodes | O
* $nodes intersect $nodes
* 3$nodes except ()

* $nodes/.

Value Comparison Operators

These values are used for atomic values, replacing the XPath 1.0 operators
=, 1=, <, >, >=) which are used for sequences. They may be more useful
when dealing with untyped data. Value comparison operators are:

» Used to compare single values

» May be used on numbers (xs:integer, xs:decimal, etc.).
* Result in true or false

Operands are “atomized” before comparison

« An empty sequence returns an empty sequence

» More than one value is an error
//productweight gt 100]
Operands are “atomized” before comparison

Table of Value Comparison Operators

Operator Operation

eq Equal

ne Not equal

It Less than

le Less than or equal
gt Greater than

ge Greater than or equal

%Mulberry page D-5
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Atomization

The process of atomization is used to turn a sequence into a sequence of
atomic values. This may occur in arithmetic expressions, comparison expres-
sions, function calls, or casting expressions. The process is applied to each
item in a sequence, with the result being either

* asequence of atomic values, or

* atype error.

The process works essentially like this. Each item in a sequence is examined
and

« ifitis an atomic value, uses that value,
o ifitis a node, uses its typed value, or

« if it is neither, returns an error.

General Comparison Operators

The general operators are the ones that used to be used in XPath 1.0 (=, !=,
<, >, >=). In XPath 2.0, one important distinction is that either side of the
expression between the operators can be an expression instead of just a
value. The general comparison operators:

« May compare values or sequences

e Result is true or false.

» Before comparison, atomization is applied to each operand, producing a
sequence of atomic values.

 Rules are different under backwards compatibility mode.

Another major difference is that these operators working on untyped data
work differently in XPath 2.0 than they did in XPath 1.0. In XPath 1.0, no-
des did not have types. What happened in a node comparison depended on
what kind of operator was being used and whether the node value was con-
vertible to, for example, a number. (The string 42" can convert to an inte-
ger, the string "Debbie™ cannot.) In XPath 1.0, if you asked if “a < b”and a
was “ 3 and b was “ 10 ”, the comparison would be done as if the a and b
were both numeric, and the answer would be true. In XPath 2.0, ifaand b
are untyped, they will be treated as strings. So “ a < b ” is are not compared
numerically, and it is “ false ”.

page D-6 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Table of General Comparison Operators

Operator Operation

= Equal

1= Subtraction

< Multiplication
<= Division

> Integer Division
>= Modulo

Built-in Operator Precedence: Beyond My Dear Aunt
Sally

XPath 2.0 Operators have built-in precedence
* If precedence is equal proceed left-to-right
e (x +y - z)isreally
c(xty) -z
 Higher items (in the chart on the next slide) bind before lower items
* x or y and zis really
e x or (y and z)

* Items of a lower precedence cannot be contained by operators of a higher
precedence

Operator Precedence

Operators listed from highest to lowest
(commas act as separators between operators below)

(O L1{}
« /. 1/

?, *(as an occurrence indicator), +(same)

-(unary), +(unary)

e cast

%Mulberry page D-7
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

» castable

* treat

* instance of

* iIntersect, except
* union, |

e * div, idiv, mod
o+, -

* to

* eq, ne, It, le, gt, =, 1=, <. <=, >, >4, 1S, >>, <<
* and

* or

» for, some, every, 1f

* , (comma)

page D-8 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix E
XPath 2.0 and 3.0 Data Model (advanced,

optional)

Data Model for XPath 2.0, XPath 3.0, and XPath 3.1 has three conceptual
building blocks

» Trees made up of nodes (just like XPath 1.0)
» Atomic values (integers, strings, booleans, etc.)
» Sequences of “items”
* an item is an atomic value or a reference to a node
* each item has a value and a type (xs:integer, xs:string, etc.)
* asingle item is considered to be a sequence containing one item
* asequence cannot be a member of a sequence

(Why define atomics and sequences? Because atomics and sequences represent intermediate re-
sults during expression processing!)

Sequences
 Location paths in XPath 1.0 return node sets

 Location Paths in XPath 2.0 return sequences
* Node sets

* have no duplicates
* have no intrinsic order
* Sequences
« are an ordered collection (list)
* of zero, one, or more items (not just nodes)

* may well have duplicates

In XPath 1.0 there were
“sets” of “nodes”

o XPath 1.0 centered its view on an XML document as a tree of nodes

%Mulberry page E-1
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

* Nodes have identity
» Node sets are unordered collections of nodes

o usually fall back to document order
» sometimes (reverse axes) use reverse document order

* Nodes (and their subtrees) can be copied, but references to them cannot
be multiples

In XPath 2.0/3.0+ there are
“sequences” of “items”

» XPath 2.0 does not center on a single document tree, but on arbitrary data
sets

» These can be arranged in “sequences” of “items”
* sequences are lists, ordered sets of
* pointers to nodes (which still have identity) and
» simple-typed values
* may contain duplicates

e count($node-set) = count($node-set | $node-set) is still true
(due to semantics of “|”, the union operator)

» But now we can also say ($node-set , $node-set)

A sequence of all the nodes in $node-set, then all the same nodes
again

XPath 2.0 and 3.0 are All about sequences. A sequence is an ordered collec-
tion of zero or more items:

« All expressions return sequences

All values are in sequences

A singleton is a one-item sequence

The empty sequence is a valid sequence

Members of sequences (unlike nodes) do not have identity

All sequences are ordered

page E-2 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Duplication is allowed inside sequences!

Sequences cannot nest (one level only)

if $seq = (x, y, 2),

then (a, b, $seq, y, c) evaluates to

(@, b, x,y, z,y, c)

Examples of Sequences

» A document root (and therefore a document)

» One node (and therefore a subtree)

* A series of nodes and/or document roots

» A string value (like “42)

» An integer value (like 42)

» A series of strings, integers, and/or nodes

A set of nodes described by an XPath expression, in an order

» The results of evaluating an XPath expression (say, a series of strings or
dateTime values)

(All the world’s a sequence!)

Constructing Sequences
» The comma operator “,”
* means concatenation (of items, not strings)
* makes sequences: (a, 1, w)
* Members of sequences (unlike nodes) do not have identity
 Sequences cannot nest (one level only)
* if $seq = (x, y, z),then (a, b, $seq, y, c) evaluates to
* (a, b, X, y, z, y, ©)
» Remember, duplication is allowed inside sequences!

%Mulberry page E-3
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Sequences can Contain Atomic Types

* Identified by the namespace: xmIns:xs="http://www.w3.0org/2001/
XMLSchema™

A type derived from another atomic type in a schema, by restriction

» AIll XSLT processors support a minimal set, even without a Schema:

(May also support other W3C XML Schema primitive types)

Expressions for Sequences
Constructing Sequences

XS:

XS:

XS:

XSs:

XS

XS:

XSs:

XS:

XSs:

XS

XS:

XS

XSs:

XSs:

XS

boolean
decimal
double

integer

:string

QName
anyURI
dayTimeDuration

date

stime

dateTime

:yearMonthDuration

anyAtomicType
untyped

zuntypedAtomic

The comma operator “, us used to create sequences, for example, (a, 1,

w)”

* means concatenation (of items, not strings)

page E-4

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

» The sequence (p, list, table, figure)
 these are nodes in a tree

* they still have axes

« all p children followed by all list children, followed by all tabled chil-
dren, followed by all figure children

Another way to construct sequences uses the “to operator:”

expression to expression
» Each expression must evaluate to an integer
« first integer must be smaller than the second

» Makes consecutive integers in ascending order

(1 to 10) makes (1,2,3,4,5,6,7,8,9,10)

(10, 1 to 3) makes (10, 1, 2, 3)

1 to count($some-sequence) Returns the position number of each
item in the sequence $some-sequence

reverse(5 to 10) Evaluates to (10, 9, 8, 7, 6, 5)

Sequences Take Filters

Like predicates on paths, sequences can be filtered using “[1”
* Predicates come in two styles

* numeric: e.g. $seq[3]
* predicated value is a number; returns item in that position
* i.e., indexes into the sequence
* boolean: e.g. $seq[@rating = "good"]
 keep any item, for which predicate tests true
® $seq[position()=3] is numeric predicate as boolean
» The original order is retained

« (p, list, table)[descendant::note]

A sequence of all the ps, lists, and tables. but only if they have note de-
scendants.

%Mulberry page E-5
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Iterate Over Sequences Using for Expressions
for $variable in sequence return expression

» Performs iteration over sequences

Like XSLT <xsl:for-each> except inside an XPath expression

Apply an expression to every item in a sequence

Returns a sequence of the items returned by the mapped expression

Can work across multiple sequences
» Both 1-to-1 mapping and 1-to-many mapping are possible

for $n in child::name
return concat($n/fname,

", $n/surname)

for $id in distinct-values(//@idref)
return count(key("elements-by-id",$id))

for $d in (0 to 6)

return (current-date() +

($d * xs:dayTimeDuration(*P1D")))

sum(for $i in order-item return $i/@price * $i/@qty)

Sorting into document order

» Given the sequence $nodes = (para, list, table, figure)

e Short for (child::para, child::list, child::table, child::fig-
ure)

» All para children, then all list children, then all table children, then
all figures...

e ... Inthat order
o All these will sort this sequence back into document order!

® $nodes | $nodes

$nodes | O
* $nodes intersect $nodes
* $nodes except ()

* $nodes/.

page E-6 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix F

ancestor Axis Example

x
B article article-type="reseanh-artick"

8 front
t journal-meta
)y journalsd o b itk by p="nilrr 1"

“— Fremt Zool
o joumalsle starting context:

L Frontiers in Zoalogy fdescendant: ;article-categorioes
Cy Issn P ub- bypei=" 8 pub”
17429094
3 publisher ¢ Modeis) mebected
L0 publisher-name
Baalbd Centl evaluating
?T:’Eﬁr - ancestor: inode ()
-l aniclE-mata
O atic ba- id pub-ick type"publisha-id
17429904318
& atile-id PUb-HG-ypa=" prmid”
171284
p anlicla-id pubHGIyp a="dal
1011560 7426994 3.18
{'Q}nrlule-r.munrleg
O Subjgroup Subj-group-ty pe="heading™
) subject
Methadalogy
O lg=group
QO aticle-ttle
Iiomc mowbon: & new me Shod for vismibzieg social miemcton moasamals aod omess
3 condrib-growp
) condil | d="AL" comespayes” conbab-ty paaauthor

{? name
£ SUMman
Chiase
) O e Names
banD
| O aral red-fype="aT" nd="I1"
1
g ar il red-fype="a1" nd="IT
3

ot nede

Ly amail
achaseffinotes ¢ munyeh e di
o Mn-_‘l:'l! 3
O labal
=1
— Department of Socinlvgy Stany Book Uneeanty, Story Brook, HY 11704-4345 UEA
s ot b="1
O Bbel
2
= Oradhoale Program in Ecology end Evalubon, 5 tomy Boook Unpeeraty, Stomy Book, NY 11943245, USA
< e s
= T et
=Pmongts

Axis specifier

Node set

ancestor:: article-meta, front, article, /

Mulberry
Technologies, Inc.

page F-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix G

ancestor-or-self Axis Example

w
M article atick-type="ress archearticls
X tront
Journal-rméta
D Journakid jourmnakicy pe=nimH
Froat Zoal
€3 Journaktitis starting context:
Frositiers in Zoology fdescendant: : article-categories
|Gy Issm Pub-Iypes’aputi’ =
17429004 {Jroriet node
i publisher 3¢ nodets) selected
] el B N T
L Baslvied Central evaluating
m'f::f:”“ ancestor-or-self::node ()
o anliclemeta
&) articlg-id Pub-id-type="pubisher-id
I 318
 antic lo-id PUB-iC-Type="pmer
ITLI2ES
O antic le-id PUB-icHype="dol
I01156N 1420994318
s - categoiies
© Subjgroup Subi-group-type="heading
L subject
L Wettedalogy
O Mie=group
O artiche-title
Ivionc nobston: & newr method Sor vismaliz g social méemcfon m animals and heoens
(O contrib-group
O coniib AT comeip="ye s conbibtypi="authr
b nane
) surname
e
) gV en-names
Pan D
L xraf red-typ e="a rid="11"
1
O xraf rel-hype="a nd="1r

-

Ly amail
whassffnoles cc pmogbeds
Q aff ="l"
{ label
1
Department of Sociology Stany Book Unbeemity, Stony Bevok, Y 117940345, 15A
& aff h="IF
O label
Cirachanie Progras in Ecology and Evobeson, 5y Bicak University, S oy Baak, HY 117985245, USA,
o PmEE e
L <tmara?
= Tmiore?=

Axis specifier

Node set

ancestor-or-self:: article-categories, article-meta,
front, article, /

Mulberry
Technologies, Inc.

page G-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix H

child Axis Example

L
Lo aticle artiche-ty peereseanc i artic k™
O front
O jourmal-rmeta
£ journal-x jourrak ity po="nirm1a"

— Front Zeol
@ journal-se starting context:

L Frontiers in Zoalopy fdescendant : ;article-categorios
) Issn PUb-tp="gpub”
1742900
L o publishier 3¢ Models) mebected
MO publisharname
B Cenimnl evaluating
e child: :node()
O anticldmeta
£ antic ho-d pub-ic typi="pubihae-id
1709904313
£ arte be-d pub- yps"prsd”
1712384
£ ot k- pub-ic typs"dol
1011560 7406994318
ag;j}:mu le-categaries
L subj group Subl-group-ty pe="heading”
L subject
L Metoddogy
£ 1ike=group
) article-tele
B potbon: & new method o vissbziog social oo moazamals and b

) coninib-group
L@ conliib 10="AT" Come SpaTye s Conteb-iy pes”ahor

| {f) nams
{20 SN Y
Chiase
L gv en-names
han D
=) afgl rel-type=" AT nd="IT"
=1
O xrl red-fype="aT nd="IT
L3

7 eonted node

L amail
L pehaseffingtes ¢ ¢ sanjeh eda
O o il
O kel
1
‘— Department of Sacinlogy; Stony Book Unnemity, Story Brook, HY 117944345 USA
s a4 b="1T
O kel
—2
“~ Oradanie Program in Ecology and Evalabos, Stomy Brook Uneematy, Siomy Book, HY 117943245, USA
< Frnode s
< ImaraTs
< Vmcra s

Axis specifier

Node set

child::node() subj-group

Mulberry
Technologies, Inc.

page H-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix |

descendant Axis Example

L
Q) aicle atiche-typec"resR anc heartice”
fromt
o joumal-meta
| O Joumal-id fumatidlype="nimHa

L Frunt Zoal
© joumal-itis starting context:

L Prontes in Zookogy fdescendant: :article-categories
L) issn Pub-tpem®epub” i
? 17425994 (Jrorimmine
Lo publisher 3¢ noceis) selecte
O publisher-namé
Bodkd Cential evalu ‘““ﬂ
Dnﬂ“ i3 descendant: :node()
L armchi-mata
O article- id pub-id-iypes"pu bligher-id
17429994318
 articie- i Plb-idHypi="pi
() § 2 |
@ artichke id pub-d-type="dal
100 136 7428994318
artic b cate gories
L sub} group Sublgroup-type="heading”
i subjidt
W Ethodelogy
O Mlle-gioup
O article-1abe
— Mumic rohom & newr e thod fioo v seabizing social s ioe o animals ard husare
) contrit-group
L contrib id="A1" comesp"ye s conbb- by pes" author
@ name
O SUMMAmE
e Chase
S g en-names
| ! han D
b xred ref-type=" 2 rid="i"
1
b xref Pef-typos” A1 rids"IT
-

£ email
— ihwseinoies oo muah edu
o aft iE=n"
O Eabdl
1
L [Ipumu-ntql!’Sotuh‘g Seory Bmok lln.n!uﬂ:,-. Seomy Beoolk, MY 117944345 USA
L@ aft id="1
Lo bbal
)
L Camdusts Prn;rl.m.lnimb;:.- aredl Eml.u.hn!j'l:u‘r,' Bamok Ll'm'lm'lg S'burl,' Brxok, HY 117945245 UISA
e« Tmare?=
— = ImarET>
< Imorets

Axis specifier

Node set

descendant:: subj-group, subject, "Methodology"

Mulberry
Technologies, Inc.

page I-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix J

descendant-or-self Axis Example

- |
O mtiele article-typeresoarcharticke”™
O o
=G Joumal-rmeta
£ journalkid oL b iy e e 1

Frost Zoal
L@ journat-tise starting context:

Frontiers in Zoology fdescendant: :article-categories
) issn pul-type="epub"
17429004
L publisher 3¢ nodefs) seected
{3 publighar-name
Balied Central evaluating
?D‘L:mer o descendant-or-self: :node ()
O amcli=meta
¢| arti lo-id pulb-id- hype="publighai-id"
1729904313
) artic le-bd Pub-bikByDE="priT
IT12354
£ arti le-id pub-ick typa=" ol
1011560 7405994 3. 13
Lartic le-categonies
" sulj group SUBHgroup-type="eadng”
8 subject
i etedadopy
£ le-group
O artiche-tile
I nofshom: & merwr method for visshzing social miemeSon m sasamals and homess
D contrib-group
£ contib id="AT" comesp="yes" Constlypes" author
0 nanms
) surmame
Chien
Q) QN erenameEs
TanD
vl red-type="all" rig="IT"
1
b kel red-type="aff" rid="1T"
L %

I'd "__mr!ulnnﬂ

L email
whasefnokes c ¢ sanyeh eda
O aff ="
& labal
=1
Depurtrent of Secinlogy Steny Boak Unbemity, Stany Brook, HY 117088345, USA
o ane ="r
o labal
Crradhaste Program in Ecology and Evalubos, 5oy Biook Unfversty, Stomy Book, NT 11945245, T5A
< Pmone >
CHOraTs
< TR

Axis specifier Node set

descendant-or-self:: article-categories, subj-group,
subject, "Methodology"

Mulberry page J-1
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix K

following Axis Example

L
L artiche article-ty pe="reseanch-artic ™
0 front
puinal-meta
) Jowmaiid BTkt "R

‘— Fromt Zool
© |oumal-ile starting context

' Fromters in Zoalogy Jdeacendant: : article-categoriesa
L |5 pub-bype=" puly”
17429094
O pubilishar 3¢ otiofs) nelectod
M publisher-name
Biahid Cansal evaluating
L ubdlisher-loc f
| i following: :node ()
O article-meta
O arficle-id pub-id type="publishard
17425004318
O Articke-id PUB--YDE="prikT
171284
© anicle- id pub-ic types™ ol
1011851 7420994318
ganicle-ttagonies
) siabjgrowp Subj-Qroup-ty pe="heading
L subject
L Methodalogy
B ttle-group
L anticle-tEle
Ly notwbon: & new me thod fior viselzing social mierec o o ammals s humars
B conirib-group
condriby bd="AT" comasp="yis" contlb-ty pé="author
narme
W sumame
L
LBl g en names
“panD
o o of PEDyp= Al =t
-
wraf Fel-lype=" a1 nid="1T"
-
L amail
i heeeifino%es cc samgh eda
| aff i="l"
L el
¥
Lo pastment e Sociology; Stony Buoak Unbvesity, Stony Brook, NY 117944345 USA
B aff ho="I
Lag label
.
. i Program in Ecology and Evalubon, 5oy Biook Usseraty 5 toery Book, HY 1179485245, USA
LR
LagPmored=
L3 Tmore T

& '-_rmrtu'l e

Mulberry
Technologies, Inc.

page K-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

AXis specifier

Node set

following::

title-group, article-title, "Music
Notation ...", contrib-group ... and
all its descendants ... , aff (with
@id="11"), label, 1, "Department

of ...", aff (with @id="12") ... and all
its descendants ... , <?more?> process-
ing instruction, <?more?> processing
Instruction, <?more?> processing in-
struction

page K-2

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix L

following-sibling Axis Example

- |
O atiele artiche-Ty paresaan b artic ™
o fror
Lo pumal-mata
O fournalid Joumakidty pe="nimar

Frozt Zool
© Jourmal-tighe

starting context:

Frostisrs in Zoalepy fdeacendant: ;article-categorics

£ issn pub-tipe="apub”

S ool exd node
17429004

Ly publishar 3¢ Node(s) sdectad

{0 publighér-name
- Bashied Central evaluating
© pUblEer-loe

et following-sibling: :node()

O amicli-mta
O artic le-id pub-idh bypd="putigha-d
1208 218
£ article- i PUD-Ea=" proid”
IM12E4
& artk bo- i pUb-ibtypaeT 0T
101158 7405904 3-13
ACi-artic - categonies
Ly subj group Subi-group-type="heading”
O subject
L Metedadogy
B Mle-group
O atichi-tile

2 contrib-group

Q) name
) surname
e
L) gvennames
han D
L el red-type="ar nd="I1"
1
L xraf ref-type="aif ride"|X
-2
L amail
ehaseffnotes ¢ ¢ sanyeheda
o af ="
O bl
=1

= aff ="
o el

L5

o] coniiib i9="A T Comespa"ye s Contsbe by pasauthor

B notsbon: s mewr method for vissshemg cocial interscSon m asamals and hamams

Deprtment of Secnlogy Steny Boak Unbeemiby, Stanyy Beook, HY 117048345, USA

Orachaxte Program in Ecolegy asd Evalubons, 5temy Bieok Unreersity, Stomy Book, NY 117945245, USA

Lypge tmaie 7=
CHMOrET
< IR T

Axis specifier

Node set

following-sibling::

title-group, contrib-group, aff
(with @id="11"), aff (with @id="12"),
<?more?> processing instruction

Mulberry
Technologies, Inc.

page L-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix M

parent Axis Example

- [
& article articke-ty pes"resiancheartic k™
) front
O pumal-mata
O Joumalk poamreak -ty pe="nir 37
Fremnt Zaol
© joumal-tiie starting context:

Framibese in Zoalegy fdescendant: rarticle-categories

| & 5
O 1530 Pub-bypee=" epub i
17429094 B
L publisher 3¢ (eodiols) acexted
0 publisher-name
'~ Bioled Centrl evaluating
i DLTE“ i parent: :node ()
L arficle-meta
O anicke-id prubsich typis"putdshard"
1904305
© arficle-id PUE-HGypee” prid
1712584
& arkcle-id pub-idtypde™dol
10 11861 T408904.3-15
{Q}arlu le-ctaganies
) Sabjgroup Suby-roup-ty pe="headng”
L subject
L Mthadadogy
£ kle-group
O articli-tEle
Ihee motvbon: & e method for vinmbemg cocdsl miberschion o anmalks s homane
Q) contrib-group
Ligy contrib b="A1" comesp="yas™ contilbstypa="author
narms
£ sumans
e
L gwan names
— haaD
) ef FEfAYDe=" AT =TI
1
b o of Fef-typa=" T rid="IT
a

Ly email
~— schaseffnotes oo sonsh edo
Q@ aff ie="I1"
0 bkl
=1
Department of Sociology Stony Book Urdvesaty, Stony Beook, HY 117944345 USA
o aft ="
O bl
2
— Cenchuaie Program in Ecologyasd Fvolutian, S ey Baook Unsvernty 5 ey Book, HY 117945245, USA
< Imara s
< T aT
< Hmarad=

Axis specifier

Node set

parent:: article-meta

Mulberry
Technologies, Inc.

page M-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix N

preceding Axis Example

- |
L O aticle afiche:Gypesresearch-artic ke’
g o
Jumalmesta
4 journal-id journakictype="nimia

LyfFennt Zaol
8 journal-iitie starting context:

Lot in Zoalegy fdescendant: : article-categories
K e pub-type="epub®
L0 120094 .
.I publishar o p——
& publisher-namea
-l ed Coxtnl evaluating
._m"'m preceding: :node ()
O aricle-meta
¥ article- id pub-id-types”publsharid
Ll 42994318
8 Atk i pub-ld-type="pmid”
Lygmizsms
0 article- i pub-idtypesTdol
L0 1860 TA29904 315
-Q-.'IH k- catepories
L subp group Subi-groug-ty pe="heading”
L& subject
IMitkodaogy
O Wll-Qroup
Lo article-Tite
e Wi noiaboa: & new method for vismbzing sorial mbewc o m animals s s
D contrib-group
L contrib i0="A1" come p="ye 57 conbiib-types"author™
Q@ name
L) sumname
e Chase
L) g en-names
- bwnD
: 0 p,;a‘reH'rpa- " ridm*i
b xref reftypes" o rid="IT
| -

o oonled node

{} email
= it haseifirotes c ¢ muah edu
? an g1
o babal
=1
b Dpugtzsent of Socilogy Stoey Bmok Unbresity, Stoey Beook, WY 117944345 USA
aff id="1r"
?'D Lbal
5

L Crmuate Progrm in Ecology srd Evalution, Sty Boook Usdversity Stoory Biook, HY 11794245, US4,
= Hmare?=

. < mareT

< more =

Mulberry
Technologies, Inc.

page N-1

XPath: The Secret to Success with XSLT, XQuery, and Schematron

AXis specifier Node set

preceding:: "10.1186/1742-9994-3-18", article-
id (with @pub-id-type="doi"),
"17112384", article-id (with @pub-
id-type="pmid"), 1742-9994-3-18,
article-id (with @pub-id-
type="publisher-id"), "London,
publisher-loc, "BioMed Central™,
publisher-name, publisher,
"1742-9994", issn, "Frontiers in
Zoology", jJournal-title, "Front
Zool", journal-id, journal-meta

page N-2 %Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix O

preceding-sibling Axis Example

L
Ly anticle artick-type="resaarchantick”
103 fromt
Joumal-méta
O journakid journakid-ty pe="nim- 11

Froat Zeal
O journak-titk starting context:

Fronteis an Jeclegy Jdescendant: :article-categories
£ igsn DUD-type="epub”
1742000 "
L {_::l publishar * il sedecto
|0y publisher-name
Baohd Cental evaluating
R preceding-sibling: :node()
Loy aritle-meta
i anticle-id pubeid-types"putiishar-id
17409994315
9 article-id Pkl fypee ™ poid”
1112354
i arth le-id Pub-b-yp e dol”
101156 7400902 315
:Q}srtu le-categories
L& subp group SUE-group-type="heading™
Ley subject
Drdedalogy
£ ie-group
S0 artiche-title
B nolston: & sew method for vinulemy soeisl mierchon o aromals aed omars:
Q) contrib-group
£ conbrib id="AT" comesp="ye s contribety pes"author
Fg namne
Ly surmams
L G
L) gver-names
- TanD
b xref rel:bype="al" rid="11"
=1
b xraf Fef-type="af rid="12"
-)

Oy el
— wchussfBinotes o ¢ savgh e da
aff i1
O labal
L1
'~ Depeotment of Sociology Stomy Book Usseessty, Stony Bmak, HY 117944345 USA
O aff iE="1F
fo b

-

Oradusie Program in Ecology and Evoluton, 5oy Beook Unreematy Sioey Book HY 11945245, USA
< Fmored=
= hmarats
< Srore s

page O-1

Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

AXis specifier

Node set

preceding-sibling::

article-id (with @pub-id-
type="doi "), article-id (with @pub-
id-type="pmid"), article-id (with
@pub-id-type="publisher-id")

page O-2

%Mulberry
Technologies, Inc.

XPath: The Secret to Success with XSLT, XQuery, and Schematron

Appendix P

self Axis Example

w |
O whicle artche-typem resaarch-artick™
G fiond
O pumalmeta
L journalid joumakic fype="nim-L7
Front Zoo] I
L Joumaltite starting context
Fronteas in Zoalogy fdescendant: tarticle-categories
hE Isan pub-hpe="eput
1742.5004 g
0 publishar 3 rdols) sdected
L5y publisher-name
Biold Centinl evaluating
) e self: :node ()
) articbe-meta
Ly arlic e id pub-idHype="pubisherif
17425994318
L& artic be-id PuB-IaHype="pmid"
1MIzE4
b artic k- id pub-id-type="dol
1D IEE1T429994.3-15
| artic ke catagories
1 O sub group Subj-groug-ty pa="haeading”
O subjict
Nethodalogy
O tRle=group
L article-1le
Iimic noiabon & new methes] far visualizing social miemaction in andmals and humase
o eontsib-graup
contrib ic="A1" comegp="yes” contib-ty pe="author
) namz
Q) SuMmams
Chase
Q) W Ennanes
hanD
Q) xred retype=" Al rid="11"
. |
O xrel Feype="all rid="1T

.|

O email
— schaseifinotes oo mengeb ed
o aft ie="I"
HO» Babal
1
Depuartesent of Socwlogy Story Book Unsemity, Stony Book, HY 117944345 1S4
b aff i1
Ho» bbal
2
Comduate Frogmm i Ecology and Bvoleton, 5iomy Brok Unpemty, S ooy Book, HY 117945245, USA
<Imara?=
=G a =
< ¥morats

'_.mrlﬂirbnch

Axis specifier

Node set

self:: article-categories

Mulberry
Technologies, Inc.

page P-1

Sample XPath Select Expressions for Practice

Let’s Review the Basics

Here are a few simple XPath expressions, that could be used in a @select expression,
that is, in relationship to a context node, not used to set context or match a pattern.

sec/title All the <title> children of the <sec> children of the
context node

sec//title All the <title> children of all of the node children of
the <sec> children of the context node

--/title <title> children of the parent of the context node

ex All the attributes of the context node

/descendant::title[1] The first <title >descendent of the root

//title[l] All <title> descendents of the root that are the first

<title> child of their parent

name | collab | email

The union of the <name> and <collab> and <email>
children of the context node

./title

<title> children of the context node.
(This could also be written as ‘child::title’ or as
‘title’.)

//list[ancestor::list]

All <list> elements in the document that have a
<list> ancestor

table-wrap/caption

All <caption> children of the <table-wrap> children
of the context node

table-wrap[caption]

All <table-wrap> children of the context node, if and
only if they have a <caption> child

sec[title='Acknowledgements']

All <sec> children of the context node that have a
<title> child whose text value is
‘Acknowledgements’

sec[contains (title,
‘Acknowledgements']

All <sec> children of the context node that have a
<title> child whose text value contains the string
‘Acknowledgements’

following-sibling::*[1]

First following sibling element of the context node

preceding-sibling: :*[1]

Most recent following sibling element (reverse axis)
of the context node

count (descendant: : span)

The number of element descendants of the
context node

sec[label and title]

All the <sec> element children of the context node
that have both <label> and <title> element children

sec[@sec-type='chapter']

All the <sec> element children of the context node
that have a @sec-type attribute with a value of
“chapter”

Now with a Little More Context

//caption[count(*) > 1 or not(p)]

All the captions in the document that
have more than one child element or do
not have a <p> child element

//sec[title | pl]

All <sec> elements in the document if
they have either a <title> or a <p> child

//graphic[starts-with (@Ghref, 'http://")]

All <graphic> elements in the document,
that have an @href attribute that begins
with the string “http://”.

sec[@sec-type='chapter']/title

The <title> children of the <sec>
children of the context node, for the
<sec> elements that have a @sec-type
attribute with the value ‘chapter’

item[not (following-sibling: :item)]

<item> children of the context node that
do NOT have a following sibling that is
also an <item>

"//xref[@rid = current()/@id]"

All the <xref> elements in the document
for which the @rid attribute of the
<xref> is the same as the @id attribute
of the context (here the current)
element

sec[@sec-type='intro']//title

All the <title> descendents (whether
section titles, figure title, table title,
whatever) of all the node children of the
<sec> child of the context node that has
a @sec-type attribute with a value of
“intro”

count="table-wrap |
table[not (ancestor: :tablewrap)]"

Count the number of <table-wrap>
elements plus the number of <table>
elements that do not appear inside a
<table-wrap

../label | self::title

The <label> child of the parent of the
context node, or the context node, if
that node is a <title> element.

not (position()=1) and position()=last()

The context node is the last among its
siblings and not also the first among
them.

//xref[@rid = $id]

All the <xref> elements in the
document, for which the @rid attribute
of the <xref> equals a variable named

$id

<xsl:variable

name="published"
select="/article/front/article-
meta/issue and
not(/article/@preview='yes')"/>

If there is an <issue> element in the article
metadata, and the <article> has no
@preview attribute of ‘yes’, then the
$published variable is set to true [true()].

